

Caribbean Regional Technical Workshop on CCRIF Models

The SPHERA TC risk model A tropical cyclone wind and storm surge model for the Caribbean and Central America

With financial support from the European Union in the framework of the Caribbean Regional Resilience Building Facility, managed by the Global Facility for Disaster Reduction and Recovery (GFDRR)

CARIBBEAN REGIONAL RESILIENCE BUILDING FACILITY

Outline

- Geographical area
- Introduction
- Exposure
- Hazard
- Vulnerability
- Loss computation and insurance scheme
- Real-time operation
- Updates 2023

Geographical area

Caribbean and Central America

• Tropical cyclones in the Caribbean

Number of tropical cyclones in the Caribbean (1990-2017)

- Recent natural catastrophe have caused large damages in the Caribbean
 - 2019: TC Dorian
 - 2017: TC Irma and Maria
 - 2016: TC Earl, Matthew and Otto
 - 2015: TC Erika
 - 2014: TC Gonzalo
 - 2010: Haiti earthquake
- Readily-available money is of paramount importance to start relief efforts and recovery operations

Hurricane Irma 2017

Earthquake Haiti 2010

- Parametric insurance can provide an additional income to catastrophe-hit countries
- CCRIF has pioneered the field of sovereign parametric insurance against tropical cyclone and earthquake losses

- Caribbean and Central America TC model (<u>SPHERA</u> -System for Probabilistic Hazard Evaluation and Risk Assessment):
 - To be used by country-level institutions, e.g. governments
 - Provides payouts around two weeks after the event
 - Based on a physically-based wind and stormsurge models
 - Extensive and detailed asset exposure database (including buildings, infrastructure and crops)
 - Calibrated against reported losses of historical tropical cyclone events

• SPHERA TC

System for Probabilistic Hazard Evaluation and Risk Assessment

- CCRIF SPC The Caribbean Catastrophe Risk Insurance Facility
- The SPHERA exposure database is built and validated on country level census data, international pliterature, publicly available reports and databases and satellite images

CIEIDILIAIS

Global Assessment Report on Disaster Risk Reduction

UNITED NATIONS

World Housing Encyclopedia an Encyclopedia of Housing Construction in Seismically Active Areas of the World

• The development of the model leveraged upon a large number of datasets such as:

The Caribbean Catastrophe Risk Insurance Facility

- Categories included:
 - Residential buildings
 - Commercial buildings
 - Public Buildings
 - Industrial facilities
 - Hotels and restaurants
 - Healthcare infrastructure
 - Energy Facilities
 - Education infrastructure
 - Airports and ports
 - Transportation (roads) network
 - Crops

Example: St Kitts and Nevis

- Most common types of construction in each country
- Taxonomy defined to be used for different perils

Building Classes				
Code	Number of stories	Description		
WL	1 - 2	Light wood members, low-rise		
WS	1 - 2	Solid wood members, low-rise		
WWD	1 - 2	Wattle and Daub, low-rise		
A	1 - 2	Adobe construction, low-rise		
UFM+LR	1 - 2	Unreinforced masonry, low-rise		
SM	1 - 2	Stone masonry, low rise		
MCF+ND+LR	1 - 2	Confined masonry, non-ductile, low-rise		
MCF+D+LR	1 - 2	Confined masonry, ductile, low-rise		
RM+ND+LR	1 - 2	Reinforced masonry, non-ductile, low-rise		
RM+D+LR	1 - 2	Reinforced masonry, ductile, low-rise		
S+ND+LR	1 - 2	Steel frame, non-ductile, low-rise		
S+ND+MR	3 - 6	Steel frame, non-ductile, mid-rise		
S+D+LR	1 - 2	Steel frame, ductile, low-rise		
S+D+MR	3 - 6	Steel frame, ductile, mid-rise		
S+INF+ND+LR	1 – 2	Steel frame, masonry infills, non-ductile, low rise		
S+INF+D+LR	1 – 2	Steel frame, masonry infills, ductile, low rise		
RC+INF+ND+LR	1 – 2	Reinforced concrete infilled frame, non-ductile, low-rise		
RC+INF+ND+MR	3 – 6	Reinforced concrete infilled frame, non-ductile, mid-rise		
RC+INF+ND+HR	> 7	Reinforced concrete infilled frame, non-ductile, high-rise		
RC+INF+D+LR	1 – 2	Reinforced concrete infilled frame, ductile, low-rise		
RC+INF+D+MR	3 – 6	Reinforced concrete infilled frame, ductile, mid-rise		
RC+INF+D+HR	> 7	Reinforced concrete infilled frame, ductile, high-rise		
RC+PC+LR	1 – 2	Pre-cast concrete		
CR+LWAL+LR	1 – 2	Concrete wall and Covintec panel wall structures		
UNK	ND	Unknown and informal construction		

CRIFSPC

The Caribbean Catastrophe Risk Insurance Facility

2 martine

- 1x1 km resolution for internal areas
- 100x100m or 200x200m (depending on the info available) for coastal areas

Example: Trinidad and Tobago

Example: Turks and Caicos

SPHERA TC hazard

System for Probabilistic Hazard Evaluation and Risk Assessment

- Wind model:
 - Model selected: Silva et al. (2002):
 - Recent and state-of-the-art
 - Already developed and tested for Mexico
 - Parametric model, function of:
 - Cyclone position
 - Cyclone forward speed
 - Maximum wind speed/minimum atmospheric pressure
 - Radius of maximum wind

- Silva extreme wind model:
 - Wind profile function of pressure, radius of maximum wind and Coriolis force
 - Translational and rotational speed combined
 - Roughness effect considered

• Wind model validation (AL092008, 07/09/2008 22:30)

Ike

sphera_UR=f(Vmax)_f05_nozeroeye AL092008_0907_2230

- Storm surge model: GEOCLAW
 - Based on ClawPack, a collection of state-of-the-art finite volume methods for resolving conservation laws
 - Well established model (by UniWashington/Columbia) for storm surge, tsunami, dam break and other geophysical flows
 - Completely free and open source
 - No licence limitations
 - It can be easily modified and adapted
 - Adaptive Mesh Refinement: the space and time resolution is automatically changed during the simulation
 - Much faster compared to other models
 - No need to run the model on several nested domains

CCRIF SPC The Caribbean Catastrophe Risk Insurance Facility

• GeoClaw results example:

Hurricane Irma (2017) in Anguilla and Saint-Martin/Sint Maarten

Hurricane Maria (2017) in Eastern Puerto Rico

Validation

The Caribbean Catastrophe Risk Insurance Facility Observed level (m)

lke 2008

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

09/04/2008

- Stochastic catalogue: very large number of theoretical events for risk assessment – UPDATED for 2023 policy cycle
 - The statistical properties of the stochastic cyclones are the same as the observed hurricanes (path, pressure variation, wind velocity, (

SPHERA TC vulnerability

System for Probabilistic Hazard Evaluation and Risk Assessment

- Vulnerability:
 - Susceptibility of an asset (building, infrastructure, crop) to be damaged by a certain natural phenomenon
 - Usually expressed through damage curves

 Mean damage ratio (MDR): repair cost divided by replacement cost of the structure

CCRIF SPC The Caribbean Catastrophe Risk Insurance Facility

• Wind vulnerability

• Wind vulnerability

Types of envelope

Roof_shape	Arch
	Gable
	Нір
	Complex
	Flat/Monopitch
Roof_material	Sheet Metal/Eternite
	Shingle/Tiles
	Concrete
	Makeshift/Thatched
	Unknown
Shutter	None
	Present
Wall Opening	Windows <70% of walls
	Windows >70% of walls
	Walls without windows
	Open walls

t۱	Types of structure				
L Y	Code	Number of stories	Description		
	WL	1 - 2	Light wood members, low-rise		
	WS	1 - 2	Solid wood members, low-rise		
	WWD	1 - 2	Wattle and Daub, low-rise		
	A	1 - 2	Adobe construction, low-rise		
	UFM+LR	1 - 2	Unreinforced masonry, low-rise		
	SM	1 - 2	Stone masonry, low rise		
	MCF+ND+LR	1 - 2	Confined masonry, non-ductile, low-rise		
	MCF+D+LR	1 - 2	Confined masonry, ductile, low-rise		
	RM+ND+LR	1 - 2	Reinforced masonry, non-ductile, low-rise		
	RM+D+LR	1 - 2	Reinforced masonry, ductile, low-rise		
	S+ND+LR	1 - 2	Steel frame, non-ductile, low-rise		
	S+D+MR	3 - 6	Steel frame, ductile, mid-rise		
	S+INF+ND+LR	1 - 2	Steel frame, masonry infills, non-ductile, low rise		
	S+INF+D+LR	1 - 2	Steel frame, masonry infills, ductile, low rise		
	RC+INF+ND+LR	1 - 2	Reinforced concrete infilled frame, non-ductile, low-rise		
	RC+INF+ND+MR	3 - 6	Reinforced concrete infilled frame, non-ductile, mid-rise		
	RC+INF+ND+HR	> 7	Reinforced concrete infilled frame, non-ductile, high-rise		
	RC+INF+D+LR	1 - 2	Reinforced concrete infilled frame, ductile, low- rise		
	RC+INF+D+MR	3 - 6	Reinforced concrete infilled frame, ductile, mid- rise		
	RC+INF+D+HR	> 7	Reinforced concrete infilled frame, ductile, high-rise		
	RC+PC+LR	1 - 2	Pre-cast concrete		
			Concrete wall and Covintec panel wall		
	CR+LWAL+LR	1 - 2	structures		
	UNK	ND	Unknown and informal construction		

- Storm vulnerability vulnerability
 - Dottori, F., et al., 2016. INSYDE: a synthetic, probabilistic flood damage model based on explicit cost analysis. Nat. Hazards Earth Syst. Sci. 16, 2577–2591
 - It takes into account:
 - hazard properties at the building locations (e.g., water depth)
 - characteristics of the exposed buildings (e.g., structural type)
 - replacement cost
 - Damage mechanisms of each building component described through a what-if analysis
 - Correction for coastal flood preparedness

SPHERA loss computation and insurance scheme

System for Probabilistic Hazard Evaluation and Risk Assessment

Risk assessment

• Losses for every asset *i*:

$L_i = V_i(H_i) \times E_i$

- L_i: losses on asset *i* (USD)
- *H_i*: hazard on asset *i*(USD)
- $V_i(x)$: vulnerability curve of asset *i* (0-1)
- E_i: exposure of asset *i*(USD)
- Problem: two concurrent perils (wind and storm surge
- Total losses ≠ losses by wind + losses by storm surge

Risk assessment

 Loss probability curves are generated from the results in the long-term loss event set

Risk assessment

- Risk assessment:
 - Estimate the likelihood of losses exceeding a threshold
 - Example: exceedance probability curve

Insurance scheme

• Insurance policy

SPHERA real-time operation

System for Probabilistic Hazard Evaluation and Risk Assessment

Real-time operation (TC) CCRIFSPC

Post-event (or quasi real-time) operational workflow

2 - NOAA produces a best

1 - NOAA activates a tropical cyclone alert

Real-time operation (TC)

• WEMAP (specific session tomorrow)

Model updates 2023

System for Probabilistic Hazard Evaluation and Risk Assessment

SPHERATC – Updates 2023 CCRIFSPC

Updates 2023

- New stochastic catalogue
- Additional trigger for localized events

SPHERATC – Updates 2023 CCRIFSPC

- New stochastic catalogue:
 - Developed and calibrated specifically for the Caribbean and Central America
 - Methodology more in line with other commercial TC models
 - TC movement based on autoregressions
 - Sea level pressure based on autoregressions and a spatiallyvariable limiting factor based on sea surface temperature (maximum potential intensity)
 - Longer catalogue: equivalent length 50,000 years
 - One catalogue for the Atlantic basin and one for the Pacific basin

SPHERA TC – Updates 2023

- New stochastic catalogue:
 - Some example of cyclone tracks

Saffir-Simpson scale

Category	Wind speeds				
	m/s	knots (kn)	mph	km/h	
Five	≥ 70 m/s	≥ 137 kn	≥ 157 mph	≥ 252 km/h	
Four	58-70 m/s	113-136 kn	130-156 mph	209-251 km/h	
Three	5058 m/s	96–112 kn	111-129 mph	178-208 km/h	
Two	43-49 m/s	83–95 kn	96-110 mph	154-177 km/h	
One	33-42 m/s	64-82 kn	74-95 mph	119-153 km/h	

Related classifications

Tropical storm	18–32 m/s	34–63 kn	39-73 mph	63–118 km/h
Tropical depression	≤ 17 m/s	≤ 33 kn	≤ 38 mph	≤ 62 km/h

SPHERATC – Updates 2023 CCRIFSPC

- New stochastic catalogue main advantages:
 - A longer catalogue means a more stable and robust risk assessment, also for very small islands
 - The methodology used is aligned with recent literature and in line with other commercial models: it increases confidence of the market, the reinsurers and the community in CCRIF's view of tropical cyclone risk
 - Using spatially-variable autoregressions allows generating rare events that might not be covered using a track perturbation methodology
 - The use of a maximum potential intensity limit based on sea surface temperatures create more realistic events and, potentially, might allow including climate change effects in the future

Additional trigger: Purpose

- To detect events in which losses are particularly concentrated and produce an adequate payout
- Strategy based on the Local Disaster Index (LDI) that will be described as follows

Step 1: Identify "red cells". Red cells are 5% of the cells with highest damage ratio, β_i :

1. For a given event, compute for each cell $\beta_i = Loss_i$

Exposed Value_i

- 2. Sort them from largest to smallest
- 3. Keep the 5% of the cells with highest

Joaquin 2015 Relative loss [1843]

Step 2: Compute the average relative losses in the red cells, β_r :

1. For a given event, compute the losses experienced in the red cells and the exposed value comprised in the red cells:

$$Loss_{r} = \sum_{j=1}^{Nr} Loss_{j}$$
$$Exposed_{r} = \sum_{j=1}^{Nr} Exposed_{j}$$

where *j* comprises all red cells

2. Compute
$$\beta_r = \frac{Loss_r}{Exposed_r}$$

LDI

1.

Step 3: Compute the average damage ratio in all the cells, β_g :

$$Loss_g = \sum_{k=1}^{N} Loss_k$$

$$Exposed_g = \sum_{k=1}^{N} Exposed_k$$

where k comprises all cells

2. Compute
$$\beta_g = \frac{Loss_g}{Exposed_g}$$

LDI

Step 4: Compute LDI:

$$LDI = \begin{cases} 0 & \beta_r < 1\% \text{ or } \beta_g < 0.06\% \\ \frac{\beta_r}{\beta_g} & \text{other cases} \end{cases}$$

LDI is computed only when losses in the red cells are meaningful

- The country has a primary policy that is designed and operates in the same way as it operates now
- But there is a secondary policy whose payouts are indexed to LDI:

 $PayOut = Payout Rate * CL_2$

- L1 and L2 are percentiles of LDI in the stochastic catalog (excluding null values)
- CL₂ is chosen based on the amount of premium that wants to be used in the secondary policy (20% in our calculations)

Conclusion

System for Probabilistic Hazard Evaluation and Risk Assessment

SPHERA TC Model - Conclusion

- The SPHERA TC model is a modern, state-of-the-art tropical cyclone model designed to support parametric insurance against infrequent and catastrophic events
- \checkmark It has been reviewed and validated
- ✓ It runs near real time and allows making payments very quickly
- ✓ It has been successfully operating for a few years

SPHERA TC Model - Conclusion

- ✓ The SPHERA TC model has become even more robust and reliable thanks to:
 - New stochastic catalogue, longer than the previous and based on a methodology in line with other commercial models
 - ✓ New trigger for localised events
- ✓ The new version of SPHERA TC will start operating from the beginning of next policy year, June 1st 2023

CCRIF Regional Workshop, Miami, USA 16th February 2023

Thanks for your attention!

