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ABSTRACT 

The Bahamas is one of the foremost climate-vulnerable countries in the world. Small island 

nations’ freshwater supplies are already threatened by sea-level rise and groundwater extraction; 

nevertheless, increased aridity from climate change adds to the burden. This research aims to see 

how climate change affects precipitation and drinkable water in the Bahamas. For the historical 

data analysis, a summary of descriptive statistics and Mann Kendall test procedures were used to 

indicate the existence of any possible trends. Maximum temperature, precipitation, and potential 

future changes are evaluated in an ensemble of the 6th Phase Coupled Model Inter-comparison 

Project (CIMP6) and the available historical data collected from the Bahamas Department of 

Meteorology during the period 1971 to 2020. The study’s key findings revealed that the 

maximum temperature generally grew while the minimum temperature was falling. A 50-year 

investigation of yearly precipitation (from 1971 to 2020) showed a coefficient of variation 

ranging from 31.3 to 90.6%. It was discovered that the precipitation distribution is not typical, 

with year-to-year variations. Over the last decades, the growing climate change and variability 

are most likely responsible for the observed warming temperatures and rainfall fluctuations. 

Models project a drop in annual mean precipitation by the end of the twenty-first century. 

Increasing rainfall variability could cause more frequent and protracted periods of high or low 

groundwater levels, as well as a saline intrusion in coastal aquifers. We were confronted with a 

problem regarding data availability and the information quality of the available data. We 

conclude that coordinating efforts is required to overcome the most difficult challenges that 

climate change has posed and will pose to water resource management. 

 

Keywords: Precipitation; Temperature; Trend Analysis; CIMP6 model; Potable Water; Water 

Resources  
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1 INTRODUCTION 

Since the beginning of time, the Earth has experienced climate changes - sometimes over a long 

period of time (after volcanoes erupted) and sometimes for a much shorter interval (after a 

massive storm). The events all fall into the category of natural climate changes (movements of 

the Earth’s axis, its orbit, changes in solar activity, earthquakes, and volcanoes) (Stern and 

Kaufmann 2014). Anthropogenic greenhouse gas emissions, changes in land cover, changes in 

albedo, and reflections from the surface have contributed to this increase. Climate Change (CC) 

will likely impact both mean and extreme temperatures in addition to precipitation patterns 

(IPCC 2014a).  

There is evidence that climate change is already manifesting as increasing storms intensity and 

downpours, rising sea levels, and retreating glaciers across the globe. Several extreme climate 

and weather events are being influenced by climate change, including heatwaves, floods, and 

droughts, occurring in some regions at an increased rate (Ebi, et al. 2021). As the Earth’s surface 

temperature rises, it will change the circulation of the atmosphere, create a more active 

hydrological cycle, and hold more water (IPCC 2001). 

Climate change drives precipitation fluctuations on the Earth’s surface, influencing the planet’s 

water balance. Consequently, these fluctuations have profound implications for hydrology and 

the availability of water (IPCC 2001, IPCC 2021a). Global water resources are affected by CC in 

various ways, including complex spatial and temporal patterns, feedback effects on physical and 

human systems, and interactions between these systems (Bates, et al. 2008). As a result, long-

term management of water resources will be much more challenging, especially in regions where 

water resources are already stressed due to severely declining resources (Jobbins, Langdown and 

Bernard 2018). Adapting to climate change and mitigating its effects through water management 

is essential for long-term development and achieving the 2030 Agenda for Sustainable 

Development (Jobbins, Langdown and Bernard 2018). 

According to the latest IPCC report (AR6), global warming already has significant effects. Even 

though the degree and direction of the impact vary by region, global CC has a huge impact. 

According to the IPCC’s Fifth and Sixth Assessment Reports (AR5 and AR6), human-induced 

climate change has already disrupted weather patterns and increased extreme weather in every 

region of the world, particularly in Small Island Developing States (SIDS). Extreme weather has 

become more intense and frequent, and this trend is expected to continue. It has been predicted 

that more people will experience water stress in the future due to drought, one of the most 

extreme events in recent history. 

According to IPCC 2021a, sea-level rise is the significant impact of climate change on coastal 

aquifers. However, many other factors, including coastal erosion, precipitation, and temperature, 

negatively affect evapotranspiration and groundwater recharge (Moeck, Brunner and Hunkeler 

2016). The contribution of these individual consequences is unknown, and it is unclear if they 

will have a cumulative effect or cancel each other out. The climate change trends in many 

countries have been forecast using scenarios to develop appropriate action and adjustment 

measures. 
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1.1 BACKGROUND 

An essential human right is to have access to safe and affordable water. Water is a fundamental 

and essential requirement for the existence and subsistence of life because plants, animals and 

people depend on these invaluable natural resources. The social and economic development of 

any nation depends upon the availability of water. Human activities such as drinking, agriculture, 

and producing electricity require water in significant amounts. The Bahamas’ economy has 

always been based on mass tourism (Roebuck, Pochatila and Ortiz 2004). The tourism industry 

has a long history of wreaking havoc on the environment. Tourism can put pressure on scarce 

natural resources in a given location, including increased demand for power and water, which 

can strain local resources (Roebuck, Pochatila and Ortiz 2004). However, water availability in a 

sustainable quality and quantity is scarce for many reasons, including the most complex 

challenges of twenty-first-century climate change (CC).  

It is impossible to live if you lack access to adequate and safe drinking water. Even though vast 

amounts of water are available globally, freshwater only represents 1% of it (Jackson, et al. 

2001). According to UN criteria, water availability is so limited that it is classified as “scarce”. 

According to Roebuck, Pochatila and Ortiz (2004), New Providence alone requires eleven 

million gallons a day out of the nine million gallons a day available, excluding the tourism 

industry, which puts a substantial demand on water resources (FAO 2015).  

Global Climate Model (GCM) studies predict significant regional and global fluctuations in 

average precipitation and air temperature. It is almost certain that these changes will affect the 

recharge of groundwater.  (Kurylyk and MacQuarrie 2013). According to the IPCC report 

(2008), climate change will influence rainfall patterns and sea levels around the planet over the 

next century. Because groundwater supplies are the principal source of potable water for human 

consumption in The Bahamas, with over 90% of all freshwater resources located within 1.5 

meters of the surface (Roebuck, Pochatila and Ortiz 2004), water managers and governments are 

apprehensive about its possible decline and quality. We are experiencing an unprecedented 

climate change that undoubtedly poses significant threats to the planet as a whole. Understanding 

the science and mechanism behind this concept is vital before moving on to its implications. 

1.1.1 WHAT ARE THE SIGNS THAT THE CLIMATE IS CHANGING? 

Although land and sea temperatures vary considerably yearly, a distinct trend is underlying them. 

In the IPCC AR4 report, climate scientists noted that global temperatures increased by 0.74°C 

between 1906 and 2005. The IPCC AR5 report, however, indicated that temperatures increased 

by 0.85°C between 1880 and 2012 (IPCC 2021a). Over the past several decades, land 

temperatures have risen more rapidly than ocean temperatures. There has been global-mean 

warming in the mid-troposphere, roughly 5 km above the surface. Despite the lack of data in 

tropical areas, there appears to have been a slight shift in temperature in the tropical mid-

troposphere over the previous two centuries (Steiner, et al. 2020), which contradicts models 

(Thompson, et al. 2012). 

Precipitations may change due to climate change, including their amount, intensity, frequency, 

and types. The oceans and atmospheric circulation patterns substantially impact these changes, 
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which show many natural variabilities (Trenberth 1995) (Mueller and Roeckner 2006). These 

changes already affect ecosystems, biodiversity, humans and economic activities (O'Brien and 

Leichenko 2000) (Sumaila, et al. 2011) (Franco, et al. 2020). 

Figure 1-1: Observed changes in our climate system 

 

According to Obeta (2009), the predicted change in mean climatic conditions is expected to be a 

long-term process that will take decades to complete. The climate variability is seen through 

seasonal fluctuations, inter-annual variability, and severe weather events. The consequences of 

CC are felt across the globe, and no government can take unilateral action that will have global 

impacts without facing the consequences. The precipitation regime shifts simultaneously as the 

world warms, and extreme events such as tropical cyclones, floods and droughts are becoming 

more commonplace (Trenberth 2011). 

Freshwater resources are significantly affected by the weather and climate change. The 

availability of freshwater and the frequency of floods and droughts will be influenced by global 

climate change induced by the build-up of greenhouse gases in the atmosphere (IPCC 2021a). A 

changing climate will affect the availability and quality of water in numerous industries, 

including energy production, infrastructure, human health, agriculture, and ecosystems (Rodell, 

et al. 2018). In locations where rainfall is increasing, water quality may decrease (Hatfield and 

Prueger 2004). All water cycle components are in a delicate balance, including precipitation, 

evaporation, and other water cycle activities. The hydrologic cycle and water resources are 

crucial links in the climate change chain. 

Water resources worldwide have both positive and negative effects due to changes in 

hydrological regimes, but there is an overall net negative impact on the availability of usable 

water resources. The world’s water supplies are under pressure due to demographic, economic, 

and social concerns. Growth, gender, and age distributions affect population dynamics, and 

migration has strained freshwater resources (WWAP 2012). In many countries worldwide, 

particularly in developing countries, the increase in human population and environmental 
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degradation have reduced human access to safe drinking water over the last few decades 

(McMichael 2000). 

Groundwater accounts for approximately 30% of the world’s fresh water (Pimentel, et al. 2004), 

which is 70% of the freshwater on the planet. Groundwater is the planetary most extensive 

freshwater reservoir, accounting for nearly 70 times the amount of surface water (Fetter 2001). 

The possible decline and quality of groundwater supplies is the primary concern of water 

managers and governments. As underground aquifers are recharged primarily by precipitation 

and surface water interaction, climate change is likely to have an effect on these two factors 

(precipitation and surface water). Changes in surface water levels and quality may be the most 

noticeable effects of climate change. As the principal source of drinking water for most people, 

surface water levels and quality are likely to vary significantly due to climate change (Bear, et al. 

1999). 

Considering precipitation requires consideration of the rainfall pattern. Research has not been 

conducted on the spatial pattern of seasonal precipitation in the Bahamas. Several statistical tools 

were employed to look for patterns in historical climatic evidence in the Caribbean. Detecting 

differences in rainfall patterns might be possible in the Bahamas by investigating the trend and 

homogeneity of the rainfall series in the current study. 

1.2 PURPOSE AND OBJECTIVES OF THE STUDY 

Climate change is examined primarily in this paper as it pertains to precipitation effects. 

Additionally, it will investigate how changes in precipitation and temperature may affect the 

availability of potable water in The Bahamas. The investigation of the climate characteristics 

utilises Department of Meteorology data from 1971 to 2020 and the 6th Phase Coupled Model 

Inter-comparison Project (CIMP6) model data for the detention of future maximum, minimum, 

and precipitation tends and changes using three periods.  

The primary source of sustainable potable water supply for the population is groundwater 

aquifers lying in limestone bedrock on the islands (Rossing 2010). The possible repercussions of 

climate change, on the other hand, could jeopardise the groundwater’s long-term viability. Since 

the development on the islands has soared in recent years (both permanent and temporary 

residences during peak tourist seasons), future climate change trends must be studied to 

determine how they can affect groundwater systems. The findings of such an investigation could 

help the islands manage their water resources more efficiently and take preventative measures to 

avert future water shortages. 

The present study analysed the past and future precipitation variability across the Bahamas. The 

study was conducted using observed and downscaled climate data from the Bahamas Department 

of Meteorology and potable water supply data from Water and Sewage. 

Main objectives 

The study’s main objective is to evaluate the effects of climate change on precipitation and 

portable water supplies in The Bahamas. 
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Specific objectives 

The following specific objectives will help reach the primary objective: 

• Examine and analyse the historical climate data (precipitation and temperature) in the 

research area. 

• To describe the wet and dry season rainfall patterns during the last five decades. 

• Analyse climatic trends over the last five decades and develop future climate scenarios 

based on those trends until the mid-twentieth century (the 2050s). 

• Analyze the impact of extreme events on the availability and quality of water supplies 

using models such as Global Climate Models (GCMs) and Regional Climate Models 

(RCMs). 

• To investigate alternate adaptation possibilities in The Bahamas (water trading, 

desalination, and water recycling/reuse). 

Research questions 

In general, the study questions will be divided into four categories: 

• What temperature and precipitation trends have been observed over the Bahamas? 

o What are the features of precipitation in terms of quantity, frequency, and 

intensity? 

• In the mid-twentieth century (the 2050s), what conditions (precipitation, temperature, 

sea-level rise, and saltwater intrusion) can be predicted in The Bahamas due to CC? 

• What are the likely and the expected consequences for water resources? 

• What climate-resilient adaptation methods exist or need to be developed in The Bahamas 

to reduce the detrimental impact of climate change on water resources? 

1.3 RESEARCH RATIONALE 

Anthropogenic activities are increasingly responsible for changing our environment. A growing 

number of studies have shown that Earth's temperature will rise in the twenty-first century, 

raising the fundamental question of what impact global warming will have on humans and the 

environment (IPCC 2021a). Climate change poses a severe threat to The Bahamas’ water sector 

because projections show that temperatures will likely rise, rainfall will decrease, storms will 

intensify, and sea levels will rise. The water sector is already vulnerable and is expected to 

become even more susceptible as sea levels rise and storm intensity increases. 

According to the latest climate impact projections, climate change is expected to widen the gap 

between supply and demand in fresh drinking water. In the Bahamas, freshwater resources are 

scarce, and it is vulnerable to flooding and contamination, among others (Rossing 2010). 

Freshwater lakes are found only in shallow sedimentary limestone aquifers with extremely 

delicate freshwater “lenses” (Rossing 2010) (Cashman 2014). Due to their flat nature, there is 

limited surface water drainage and no freshwater rivers on the islands. The most harmful to the 

health of the Bahamas’ freshwater reserves is a significant increase in tropical cyclone activity 

since 1995 (Taylor, et al. 2020). Extreme storms result in more substantial storm surges 
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combined with the acceleration of sea-level rise (raising the risk of saline water in very shallow 

aquifers (FAO 2015)). 

Climate change is likely to hamper human development due to a combination of all of these 

factors. Climate change and predicted changes should be incorporated into each of the 

development plans for the country, as The Bahamas is one of the lowest-lying countries in the 

region. A high level of risk exposure and inadequate adaptation resources make the Bahamas one 

of the most vulnerable countries to climate change. As a result, the expected changes in 

precipitation for the country must be considered to create plans for the country’s development 

agenda.  

Seawater is an inherent component of coastal settlements in The Bahamas and can potentially 

seep into freshwater aquifers, making it difficult for them to maintain a sustainable groundwater 

supply for settlements along the coastal line. Those living on islands face a complicated issue 

because sea level rise has many long-term effects on coastal regions, including increased coastal 

erosion and saltwater intrusion.  

Figure 1-2: Movement of the saltwater interface under normal conditions, and in case of saltwater intrusion 

due to over pumping and sea-level rise (SLR) 

 

Current potable water harvesting practices may become unsustainable due to altering rainfall 

patterns or temperature changes that impair the viability of resources due to expected climate 

change. An over-abstraction of groundwater can also cause or exaggerate salinity intrusion 

(IPCC 2007). Assessing the capacity for catchments to provide potable water under the 

consequences of climate change requires understanding future seasonal changes in rainfall 

patterns and hydrological regimes (Sohoulande Djebou and Singh 2016). 

Almost 400 thousand people live throughout the Bahamas, putting a heavy demand on the 

national water supply. International visitors amount to nearly 4 million annually, compounding 

the problem. Climate change, rising sea levels and increased demand for drinking water due to 

population growth will exacerbate the current water supply challenge. Of keen importance will 

be to take proactive, immediate decisions to ensure adequate supplies. Despite the unique needs 

of groundwater, relatively few studies have investigated the impacts of climate change on the 

country’s aquifers. 
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1.4 THESIS STRUCTURE 

This paper is divided into six broad parts. Starting with a brief introduction, Section 1 elucidated 

the general description of the problem and its components. The first section of the report 

examines the background, the research questions, and hypotheses and objectives. 

The next section (Chapter 2) consists of a review, synthesis and discussion of studies undertaken 

by numerous authors. This section provides the theoretical background and important principles 

related to the issue in question. Climate change science, precipitation, and climate-related 

impacts on precipitation and potable water are the main theoretical concepts presented in this 

chapter. The research mentioned is focused chiefly on mechanisms for rainfall modification.  

In the Methodology section (Chapter 3), the research design, data collection, data preparation, 

and analysis methods are outlined following the literature review. This section also discusses 

data scarcity in the Bahamas and outlines various data sets used for climate research. This 

section also gives a general overview regarding the study area, including physical characteristics.  

The results and discussion from the temperature and precipitation datasets analyses using the 

methods specified in Section 3 are presented in Sections 4 and 5.  

Finally, Section 6 summarises the research reported in earlier chapters and the thesis’ findings, 

conclusions, and research recommendations for future studies. 

2 LITERATURE REVIEW 

Climate change (CC) is unequivocal (Charron 2016), and has been designated as one of the 

twenty-first century’s major global issues, impacting natural and human systems, increasing their 

susceptibility in various scales and with differing degrees of intensity (IPCC 2013). 

Unfortunately, the problem has reached such a scale that its consequences pose serious dangers 

in the future (Barnett and Adger 2003) (Grove 2010). Understanding the science and mechanism 

is crucial to comprehend its implications fully. 

2.1 WEATHER VS CLIMATE 

What is the Weather? 

There is a great deal of variation in weather and climate on different scales, both spatial and 

temporal. The proof for this is evident in our present observations and simulations of climate and 

from documents relating to previous climates and glaciations (Bradley 2014) (Saltzman 2002) 

(Ahrens and Henson 2021). The conditions in the atmosphere above a specific location at a 

specific time are described as weather. The world experience weather every day as temperature, 

rain, snow, hail, and wind. These may change throughout the day. The weather forecast can be 

quite specific (“it will be cloudy and cool tomorrow morning, warming in the afternoon with 

thunderstorms, becoming fair and mild by nightfall”) but remains meaningless beyond a few 

days (Ahrens and Henson 2021). 

What is Climate? 
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In contrast, the climate analyses how the weather changes over time, usually over a long period 

of time, typically over 30 years (Armstrong, Krasny and Schuldt 2018). Short-term weather 

refers to the state of the atmosphere, whereas climate refers to a long-term weather pattern in a 

specific location (Armstrong, Krasny and Schuldt 2018) (Ahrens and Henson 2021). According 

to the World Meteorological Organization (WMO), the canonical time for describing a climate is 

30 years. Interestingly, climate predictions are more concerned with expected changes in average 

conditions while acknowledging that individual days, weeks, months, or even years will always 

defy the overall trend. Scientists have delineated climate zones throughout the world (Belda, et 

al. 2014) (Beck, et al. 2018). As scientists study the atmosphere’s interactions with the oceans, 

ice sheets, land, and vegetation, they must examine how these systems interrelate. The entire 

planetary climate system can be described using a five-part approach. Climate is affected by both 

the daily weather and the long-term averages of the interacting components of the geosphere and 

biosphere (Rohli and Vega 2017). 

Figure 2-1: Major components of the global climate system and their main interactions 

 

The sun significantly influences climate (Beer, Mende and Stellmacher 2000). The sun provides 

the energy required to warm the Earth. If the Earth’s atmosphere and some gases were absent, 

the climate would very certainly not be the same. The atmosphere acts as a barrier to prevent 

heat from escaping into space (Ahrens and Henson 2021). The planet would turn into a frigid 

place without this mechanism. The balance of the two factors determines the Earth's average 

temperature as a result of the sun's energy coming in and the radiant heat made through the 

atmosphere (Ahrens and Henson 2021).  

The equatorial location of the sun and the poles is crucial to the climate system since the sun has 

an uneven energy distribution. The climate of the polar regions and the warm tropical tropics is 

influenced by this unequal energy distribution, which the climate of the atmosphere and ocean 

can modify. Ocean currents, atmospheric circulation, evaporation, precipitation, and weather 

result from non-uniform heating or the consequent heat transport (Ahrens and Henson 2021) 

(Oke 2002). 

The atmosphere contains gases that allow the sun’s energy to pass through but prevent it from 

escaping into space. The greenhouse effect is the name given to this phenomenon (Error! Not a 
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valid bookmark self-reference.). The gases that cause this are called GHGs. Examples include 

carbon dioxide, methane, and water vapour. More than a century and a half years ago, scientists 

began examining the effects of GHGs. According to their findings, the Earth would be 30 °C 

colder without the greenhouse effect, rendering it uninhabitable (Ahrens and Henson 2021). Due 

to the effectiveness of GHGs in keeping the Earth warm, any temperature change will result in 

feedback. 

Figure 2-2: The greenhouse effect 

 

2.2 WHAT IS CLIMATE CHANGE 

There is a common misconception among the general public, mainstream media, and 

policymakers that climate change is the same as global warming (Liu, Vedlitz and Alston 2008) 

(Whitmarsh 2009). It is unsurprising since the documented rise in mean temperatures near the 

Earth’s surface presents society with the most obvious proof that our climate is changing 

(Hansen, Sato and Ruedy 2012) (Thomas, et al. 2020). Globally, human activity has significantly 

affected the climate as billions of tonnes of GHGs have been released into the atmosphere 

(Skripnuk and Samylovskaya 2018). Historically, these changes have been caused by things like 

solar and volcanic activity and minor shifts in Earth's orbit. Projections from the 

Intergovernmental Panel on Climate Change (IPCC) experiment and other highly known Global 

Climate Models (GCMs) predict significant global warming and changes in precipitation 

frequency and amount from 2000 to 2100 (IPCC 2001). IPCC (2019) found that extreme events 

have become more common, intense, and prolonged since 1850-1900. 

According to the IPCC, the climate is “average weather over a specific period and area, taking 

into account its variability”. The IPCC defines climate changes as a change in climate observable 

(e.g., using statistical tests) by changes in the mean and/or variability of its characteristics over 

time, generally decades or more (IPCC 2012). Furthermore, the IPCC stated any change in 

climate over time, regardless of whether it is caused by human activity or natural variability, is 

climate change.  
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Contrary to this, the UNFCC defines climate change (CC) as a change in the climate caused by 

human activities and natural climate fluctuations observed across comparable periods (UN 

1992). A change in the mean and variability of meteorological variables is associated with it. 

Scientists often refer to natural climate change as climate change in a broader sense. The term 

"climate change" refers to statistically significant variations in climate state or variability lasting 

for an extended period, typically decades or longer (IPCC 2001, 2013, 2014a, 2021a). 

When analysing CC, it is critical to look at the long-term record of climatic factors rather than 

the short-term. Despite their similarities, climate change and climatic variability refer to 

fundamentally different processes, despite their sometimes confused meanings. Climate 

variability is a short-term fluctuation in the mean temperature or climatic conditions, whereas CC 

is a statistically significant long-term shift (G. C. Hegerl, F. Zwiers, et al. 2007). 

The atmosphere, water cycle, and socioeconomic systems have all been affected by CC, and the 

consequences are likely to worsen in the twenty-first century (IPCC 2013). Global temperatures 

have risen by about one degree Celcius since the pre-industrial period because of CC (Dibike and 

Coulibaly 2005). CC can influence local climatic conditions, thereby accelerating hydrological 

processes (Kim, Kim and Kwon 2011). The management of water resources must consider such 

likely hydrologic changes. Effective adaptation measures necessitate incorporating CC into long-

term infrastructure investments on which society relies (IPCC 2021a). 

The concept of climate change is more critical and riskier than other factors, such as climate 

variability and weather, since its effects last longer. It will be more challenging to change the 

state of the phenomenon once its threshold has been surpassed. A comprehensive study of the 

regional and seasonal effects of CC is required. The extent to which future climate change will 

influence regional shifts is unknown and varies by region. Various factors influence the global 

climate, and the outcome is usually a net positive or negative result. 

2.3 GLOBAL CLIMATE CHANGE  

As the earth heats, oceanic heat content, atmospheric humidity, sea levels, and upper 

atmospheric temperatures are predicted to rise, while sea ice, snow cover, and glaciers are 

expected to decline. (Arndt, Baringer and Johnson 2010). There is now a wealth of data that our 

planet has warmed in the last 200 years (Mann and Jones 2003). Global change researchers cite 

the current epoch as the Anthropocene because human activity has altered the composition of the 

Earth’s atmosphere (Comer-Warner, et al. 2021) (Steffen, et al. 2011). GHGs, in particular 

methane, carbon dioxide, and nitrous oxide, have all increased due to human activities during the 

industrial era (Marescaux, Thieu and Garnier 2018).  

The Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) asserts 

unequivocally that current concentration levels are unprecedented in at least the last 800,000 

years (IPCC 2014a), with concentrations having risen above 300ppm and currently well over 

400ppm (Ritchie and Roser, CO₂ and Greenhouse Gas Emissions 2020). An increase in the 

greenhouse effect has the potential to drastically alter the global climate, with far-reaching 

regional implications (IPCC 1997). Despite the fact that the world's population is expected to 

exceed 10 billion by the end of the century (There is a great deal of variation in weather and 
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climate on different scales, both spatial and temporal. The proof for this is evident in our present 

observations and simulations of climate and from documents relating to previous climates and 

glaciations. The conditions in the atmosphere above a specific location at a specific time are 

described as weather. The world experience weather every day as temperature, rain, snow, hail, 

and wind. These may change throughout the day. The weather forecast can be quite specific (“it 

will be cloudy and cool tomorrow morning, warming in the afternoon with thunderstorms, 

becoming fair and mild by nightfall”) but remains meaningless beyond a few days. 

What is Climate? 

In contrast, the climate analyses how the weather changes over time, usually over a long period 

of time, typically over 30 years. Short-term weather refers to the state of the atmosphere, 

whereas climate refers to a long-term weather pattern in a specific location. According to the 

World Meteorological Organization (WMO), the canonical time for describing a climate is 30 

years. Interestingly, climate predictions are more concerned with expected changes in average 

conditions while acknowledging that individual days, weeks, months, or even years will always 

defy the overall trend. Scientists have delineated climate zones throughout the world. As 

scientists study the atmosphere’s interactions with the oceans, ice sheets, land, and vegetation, 

they must examine how these systems interrelate. The entire planetary climate system can be 

described using a five-part approach. Climate is affected by both the daily weather and the long-

term averages of the interacting components of the geosphere and biosphere. 

Figure 2-1), and per capita, energy consumption is projected to rise, without intervention, GHG 

concentrations will continue to increase, exacerbating a current radiative imbalance on the planet 

(IAEA 2021). 

Figure 2-3: World: Total Population 

 

As a result of the GHGs, the Earth’s temperature remains at an appropriate level for habitation 

(King 2005). If the GHGs reach levels above normal, energy is trapped, causing additional 
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warming of the atmosphere, oceans, and land surfaces (Armstrong, Krasny and Schuldt 2018). 

Scientists acknowledge that human-induced activities have led to the accumulation of GHGs like 

carbon dioxide, methane, and nitrous oxide (e.g. (Armstrong, Krasny and Schuldt 2018)). 

Since 1958, the Mauna Loa Observatory has been taking carbon dioxide (CO2) readings in the 

atmosphere (Elnar, et al. 2021). For the first time, the station measured above 400 ppm in May 

2013, while the weekly average reading was above 408 ppm in May 2016 and 414 ppm in 

August 2021 (gml.noaa.gov). GHG concentrations will continue to rise unless action is taken, 

aggravating the current radiative imbalance on Earth. 

 

Figure 2-4: Monthly CO2 concentrations at Mauna 

Loa Observatory since 2016. Source: 

https://gml.noaa.gov/ccgg/trends/ 

 

Figure 2-5: Growth of CO2 concentrations at 

Mauna Loa Observatory since 1960. Source: 

https://gml.noaa.gov/ccgg/trends/ 

 

2.3.1 GLOBAL WARMING FEEDBACKS 

Several positive feedbacks result from warming. The reason why temperatures are rising cannot 

be explained entirely by GHGs. Atmospheric CO2 contributes to global warming (Scheffer, 

Brovkin and Cox 2006). Increasing anthropogenic emission of CO2 causes more heat to be 

trapped at the surface and in the lower atmosphere since carbon dioxide absorbs heat (Boer and 

Arora 2013). A major source of global warming is the combustion of fossil fuels, with CO2 

emissions responsible for almost half of the atmospheric greenhouse gas emissions (Ritchie and 

Roser 2020). CO2 levels in the atmosphere may increase due to global warming due to the loss of 

carbon from terrestrial ecosystems (Zeng, et al. 2004). Through several climate models, it has 

been suggested that the terrestrial carbon cycle may accelerate such warming (Cox, et al. 2000). 

Kirehl and Trenberth (1997) have identified water vapour as the major GHG in the greenhouse 

effect under clear skies (approximately 60%). Warm temperatures tend to increase water vapour 

levels in an atmosphere (Houghton 2005). Because water vapour is a GHG, increasing its amount 

causes the environment to warm even more (Hall and Manabe 1999). As a result, the greenhouse 

effect is substantially more significant than that caused only by CO2 (Held and Soden 2000). In 

general, this positive feedback is referred to as “water vapour feedback” in the climate literature. 
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Climate sensitivity is significantly higher than the previously stated theoretical figure of 0.25 

degrees for every 1 watt of radiant energy increase per square metre (Hall and Manabe 1999), 

(IPCC 2001), (Stephens and Ellis 2008), (Rafferty 2010). 

The concept of cloud feedback describes the relationship between atmospheric circulations, 

cloudiness, radiative, latent heating of the atmosphere and surface air temperature (G. Stephens 

2005) (Erfani and Burls 2019) (Yue, et al. 2019). Clouds absorb emitted infrared radiation from 

the planet’s surface, which provides warmth to the surface (Houghton 2005). Yue et al. (2019) 

found a substantial correlation between intermodel differences in climate sensitivity and cloud 

feedback in response to long-term climate change. Cloud types and distribution are expected to 

change as a result of global warming (Sun, Yu and Zhang 2009). Climate models differ in their 

representations of cloud cover, and even small changes in cloud cover can have a significant 

impact. According to satellite data, the increasing temperature is associated with increasing cloud 

optical thickness (Yue, et al. 2019). 

2.3.2 TEMPERATURE  

The global average surface temperature is a significant indicator of global climate change. Mean 

global surface temperature is linked to the global energy balance and rises in a quasi-linear 

relationship with cumulative GHGs emissions (IPCC 2013). In the scientific community and 

general society, mean global surface temperature evolution is equally fascinating (Boykoff 2014) 

(Lewandowsky, et al. 2015). Between 1906 and 2005, mean global surface temperatures 

increased by 0.5°C to 0.9°C, with a pace of warming that has nearly doubled in the latter 50 

years compared to the first 50 years (Trenberth et al., 2007). 

Increasing greenhouse gases contribute to higher temperatures. According to the IPCC (2013), 

the global average surface temperature has risen nearly every three decades since 1850, with the 

exception of the decade from 1901 to 2012. Meanwhile, the IPCC's 2018 report places global 

warming at 1.0 degrees Celsius above pre-industrial levels, with 1.5 degrees Celsius predicted by 

2030-2050 if temperatures continue to rise at their current rates. The current warming rate is 

approximately ten times faster than during the Ice Age, according to researchers Armstrong et al. 

(2018). 

2.3.3 PRECIPITATION SHIFTS 

Precipitation is an even more important indicator of climate change than temperature (Houghton 

2005). Climate change will increase atmospheric water vapour content as the air gets warmer 

and, therefore, on average, increase precipitation, according to Houghton (2005). The can lead to 

more intense rainstorms. According to the general theory, a changing climate has caused wet 

areas to become wetter, while the drier ones become drier (Dore 2005). However, a later study 

challenges that widely accepted theory (Ljungqvist, et al. 2016) High latitudes and near the 

equator will see an increase in precipitation (Trenberth 2011) (Gimeno, et al. 2012), whereas 

subtropical subsidence regions will see decreases (Allen and Ingram 2002). The regional water 

budget may be influenced by changes in circulation patterns as well as thermodynamic effects. It 

is critical to consider both the dynamic (circulation) and thermodynamic influences of a region's 

moisture sources. 
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A link exists between precipitation and surface temperature, according to the Clausius-Clapeyron 

equations (Skliris, et al. 2016) (Fujita and Sato 2017). In accordance with the Clausius-

Clapeyron equations, temperature increases lead to increases in saturation vapour pressure and 

rate (Held and Soden 2006). Because water vapour is a gas, it is sensitive to changes in 

temperature, which results in water vapour feedback. As a result of this interaction, many 

researchers believe the water cycle has been accelerated or intensified (Berg, Moseley and 

Haerter 2013). 

A climate model simulation under global warming examines the range of annual precipitation, 

which is the difference between maximum and minimum precipitations along a year. As an 

immediate consequence of CO2 warming in the atmosphere, Yang et al. (2003) demonstrate a 

decrease in precipitation rate. According to a numerical simulation done by Douville et al. 

(2002), the global cycling rate appears to decrease when evaporation, total precipitable water 

(TPW), and precipitation increase. Climate change tends to increase precipitation variability on 

average over the globe. Generally speaking, this is a global phenomenon, except for a few bands 

along 30°S and 30°N. In addition to changes in intensity, changes in precipitation frequency are 

also correlated with changes in mean precipitation (Sun, et al. 2007) (Liu, et al. 2009) (R. Allan, 

et al. 2010). 

2.3.4 IMPACTS OF GLOBAL CLIMATE CHANGE 

The impact of global climate change is likely to lead to more extreme weather patterns, which 

will likely worsen and become more frequent in the future (Coumou and Rahmstorf 2012). There 

has been an increase in drought events with the rise of extreme events (IPCC 2018). As a result, 

more people worldwide will experience water stress (IPCC 2018). This may be particularly true 

in tropical areas (Dore 2005) and regions dominated by snowmelt, such as the Colorado River 

Basin in the Northwest United States. 

The implications highlighted by Armstrong et al. (2018) are rising ocean temperatures and 

acidity, rising sea levels, melting ice, and changing local and regional weather. The rising sea 

levels and disruption of the hydrological cycle (primarily changes in precipitation amounts and 

patterns) result from this climate phenomenon, which has ramifications for ecosystems. Besides 

increasing air temperature, climate change can also cause a variety of other phenomena. Due to 

climate change, extreme weather events such as heatwaves, cold spells, floods, and droughts can 

also occur. Can also expect fluctuations in agricultural outputs, ecosystems deterioration, and 

species to become extinct in response to temperature changes (Grotjahn 2020) (IPCC 2021a). 

2.4 CLIMATE CHANGE IN THE CARIBBEAN 

Climate conditions in the Caribbean are influenced by the Pacific and Atlantic Oceans as well as 

North and South America (Jury 2009c). The climate in the Caribbean region is also expected to 

change significantly due to global warming. The Caribbean will most likely suffer severe climate 

change impacts over the course of this century (Pulwarty, Nurse and Trotz 2010) (Nurse, et al. 

2014). Small Island Developing States (SIDS) and maritime borders are more prevalent in the 

Caribbean than anywhere else in the world (Pulwarty, Nurse and Trotz 2010). There has been 

less research done on Caribbean climatology than on northern climates. Various early analyses 
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used monthly temperature and precipitation series from individual islands (Singh 1997) or made 

comparisons with other tropical regions.  

Climate change science has made great strides in the region (Karmalkar, et al. 2013) (Hall, et al. 

2013). By contrast, regional impact analysis focusing on socio-economic systems has not 

increased in a comparable way. The complex and diverse nature of the exposure of Caribbean 

countries and their vulnerability to the impacts of climate change is better understood. However, 

it is urgently necessary to carry out a more comprehensive study of the underlying reasons 

behind and the factors driving its social and economic vulnerability (Shah, et al. 2013). 

Vulnerability  

Vulnerability is frequently described or framed in terms of a social or ecological system's 

sensitivity or exposure to shocks, stresses, or disturbances (Adger 2006). According to the IPCC 

AR5 Report, vulnerability is defined as “the propensity or predisposition to be adversely 

affected”. It is generally accepted that vulnerability has external and internal components, 

particularly within disaster literature.  

Several factors make Caribbean small island states vulnerable to climate change. Research has 

well documented the region’s vulnerability to a changing climate (Hall, et al. 2013) (Pulwarty, 

Nurse and Trotz 2010). Low-lying locations and the storm surges generated by sea-level rise are 

among the geographical vulnerabilities. Other vulnerabilities include coastal areas heavily 

affected by tropical storms and hurricanes, high temperatures, few land resources, and increased 

dependence on fresh groundwater (Benjamin 2010). 

The vulnerability and resilience of Caribbean communities to climate change threats also depend 

on other factors such as population, an overreliance on climate-sensitive economic activities, and 

massive public debt, multiple impact studies have confirmed. The conditions confronting 

Caribbean countries are typically exacerbated by their colonial history and underlying historical 

legacies (Cardona 2011) (Wisner, et al. 2004). Global economic change has long created 

additional vulnerabilities in the Caribbean, primarily because of the damage caused by 

imperialism over many centuries. 

Temperature and Precipitation 

The tropical Caribbean has experienced an average temperature increase of 1°C since pre-

industrial times (IPCC 2018). The IPCC (2018) estimates that warming occurs in the Caribbean 

at a rate of 0.2°C every decade. By 2030, it is predicted that the Caribbean will reach 1.5°C of 

warming, based on current trends and IPCC estimates (2018). Precipitation is higher in May and 

October and lowers in July when air pressure and trade winds increase in the Caribbean (Gamble 

and Curtis, Caribbean precipitation: review, model and prospect 2008) (Gamble, Parnell and 

Curtis 2008). 

2.5 CLIMATE CHANGE IN THE BAHAMAS 

Vulnerability  



 

16 

 

A small island nation like the Bahamas brings many challenges. In the Bahamas, sea levels rise, 

erosion of sandy beaches, and droughts are occuring due to climate change. Several hurricanes 

and other damaging storms have previously struck the country, as have others in the Caribbean. 

Hurricanes Irma and Maria, both Category 5 storms, devastated the Bahamas in 2017 (ACAPS; 

OCHA; UNDP; 2017). Their combined damages triggered the evacuation of many of the islands. 

The Bahamas were devastated by Hurricanes Joaquin (2015) and Matthew (2016) only a short 

time earlier. Approximately USD 3 billion was estimated to have been lost in damage from 

Hurricane Dorian, a Category 5 storm that happened in 2019. These effects have negatively 

affected economic development in the Bahamas, and they will likely become worse going 

forward. 

2.6 WATER USE 

Water scarcity is the world’s most serious problem (Jury and Vaux 2006). Water use patterns 

may change as a result of population growth, economic development, and shifting perspectives 

on the value of water. Water for irrigation, for example, maybe prioritized over water for 

domestic use. Rising population, urbanisation, and climate change in developing countries may 

restrict urban water availability (O’Hara and Georgakakos 2008). UNEP has identified the 

Bahamas as one of the SIDS countries where water scarcity or stress will be a problem by 2025 

(UNEP 2014).  

Table 2-1: Water Use (Source: FAO (2015), Country profile – Bahamas) 

      

Water withdrawal:      

Total water withdrawal   - - million m3 /year 

 - 
Agriculture (Irrigation + Livestock 
+ Aquaculture) 

- - million m3 /year 

 - Municipalities 2013 31 million m3 /year 
 - Industry - - million m3 /year 
 Per inhabitant - - m3 /year 

Surface water and groundwater withdrawal (primary and secondary) - - million m3 /year 

 As % of total actual renewable water 
resources 

- - % 

Non-conventional sources 
of water: 

     

Produced municipal 
wastewater 

  - - million m3 /year 

Treated municipal 
wastewater 

  - - million m3 /year 

Direct use of treated municipal wastewater - - million m3 /year 

Direct use of agricultural drainage water - - million m3 /year 

Desalinated water 
produced 

  2000 7.4 million m3 /year 
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Figure 2-6: Households’ Access To Water. Source: 2010 Census 

Type of access Households (2010) Percentage 

Public piped into dwelling 63438 62% 

Public piped into yard 1749 2% 

Private piped into dwelling 31763 31% 

Private not piped 2920 3% 

Public standpipe 1036 1% 

Public well or tank 93 0% 

Rainwater system 1111 1% 

Other 648 1% 

Total 102758 100% 

Alternative sources need to be explored to compensate for the decline in groundwater resources, 

especially in New Providence. According to FAO (2015), desalination is becoming more 

popular, and it will most certainly continue to do so. The availability of fresh groundwater is 

decreasing, while water demands are increasing. FAO (2015) further explained that rainwater 

catchment is infrequently employed, providing only 3% or less of the total water supply. The 

depletion of resources and quality deterioration are two separate but interrelated problems (Jury 

and Vaux Jr 2007). A decline in groundwater quality can be caused by pollution and excessive 

extraction. 

Table 2-2: Freshwater resources in The Bahamas. Source: IWRM Plan Bahamas Report (Final Report Feb 

07) 

Island 
Size 

(Acres) 
Freshwater 
Lens (Acres) 

Lens Area/Size 
Max. Daily 
Abstraction 

(MIG) 

Water 
Available 

(IG/D) 
Person 1990 

Census 

Total 
Population 

1990 
Census 

Abaco 415360 116280 0.28 79.1 7.906 10003 

Acklins 96000 15783 0.16 4.36 10765 405 

Andros 1472000 338585 0.23 209.92 25672 8177 

Bimini 7040 395 0.06 0.17 104 1639 

Cat Island 96000 14774 0.15 6.8 4005 1698 

Crooked Is. 58900 5923 0.1 1.74 4223 412 

Eleuthera 128000 16599 0.13 8.13 768 10584 

Exumas 71680 6586 0.09 2.9 816 3556 

Grand 
Bahama 

339200 147884 0.44 93.17 2278 40898 

Gt, Inagua 383360 3571 0.01 0.86 873 985 

Long Island 147200 9301 0.06 2.88 977 2949 

Mayaguana 70400  0.03 0.65 2083 312 

New 
Providence 

51200 2340 0.34 9.63 60 172196 
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TOTAL 3336340 695524 0.208 420.31 60530 253814 

2.7 RESEARCH ON CLIMATE MODELS 

Climate models were used to predict how the climate changes and evolves. The fact that climate 

projections can differ is due to the fact that different climate models use different plausible 

representations of climate systems. Models of climate change can be used to calculate the 

amount that climate change will affect temperature and precipitation under different climate 

scenarios. Many aspects, such as emission circumstances and historical data, are taken into 

account by climate models. This study’s section on climate scenarios includes a discussion of 

possible emission scenarios. 

Using multiple numerical models, scientists study the climate system and its behaviour across a 

wide range of spatial and temporal scales (IPCC 2021a). The increasing availability of 

inexpensive computational resources has enabled many scientific institutions to use global 

circulation models (GCMs) and regional climate models (RCMs) to simulate climate. Our 

understanding of past and present climate is advanced by using climate models (IPCC 2021a). 

These models help understand climate processes, simulate historical climates, and predict future 

climates (e.g., future GHG concentrations and land use). 

Various climate models are employed in this study to avoid uncertainty because one model may 

raise the result’s uncertainty. This paper’s models incorporate historical climate simulations as 

well as future climate change scenarios. Changes in temperature and precipitation are analysed 

for the historical projection from 1991 to 2016 and the future prediction from 2020 to 2100. 

2.7.1 GLOBAL CLIMATE MODELS (GCM) 

The GCM is a three-dimensional model that represents the climate system mathematically 

(Basher et al., 2000) (Asch, et al. 2016). The modelling tool helps reproduce a complex ensemble 

of processes that impact climate evolution (G. C. Hegerl, F. Zwiers, et al. 2007) (Kiktev, et al. 

2007) (Min, et al. 2009). As a result, derived differential equations reproduce the whole climate 

evolution by combining the fundamental laws of physics, fluid mechanics, and chemical 

reactions (Trzaska and Schnarr 2014). Grids are created, both horizontal and vertically, for the 

Earth, oceans, and atmosphere in order to make this possible (There is a great deal of variation in 

weather and climate on different scales, both spatial and temporal. The proof for this is evident in 

our present observations and simulations of climate and from documents relating to previous 

climates and glaciations. The conditions in the atmosphere above a specific location at a specific 

time are described as weather. The world experience weather every day as temperature, rain, 

snow, hail, and wind. These may change throughout the day. The weather forecast can be quite 

specific (“it will be cloudy and cool tomorrow morning, warming in the afternoon with 

thunderstorms, becoming fair and mild by nightfall”) but remains meaningless beyond a few 

days. 

What is Climate? 
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In contrast, the climate analyses how the weather changes over time, usually over a long period 

of time, typically over 30 years. Short-term weather refers to the state of the atmosphere, 

whereas climate refers to a long-term weather pattern in a specific location. According to the 

World Meteorological Organization (WMO), the canonical time for describing a climate is 30 

years. Interestingly, climate predictions are more concerned with expected changes in average 

conditions while acknowledging that individual days, weeks, months, or even years will always 

defy the overall trend. Scientists have delineated climate zones throughout the world. As 

scientists study the atmosphere’s interactions with the oceans, ice sheets, land, and vegetation, 

they must examine how these systems interrelate. The entire planetary climate system can be 

described using a five-part approach. Climate is affected by both the daily weather and the long-

term averages of the interacting components of the geosphere and biosphere. 

Figure 2-1). Pressure, wind, temperature, humidity, and rainfall data are just a few variables that 

are calculated at each grid point throughout time to anticipate their future values (Wilby, Troni, 

et al. 2009). As the grid size increases, the time step (the time between each solution) also 

decreases. The finer the grid resolution, the shorter the time between computations (Schneider, et 

al. 2017). 
Figure 2-7: Conceptual Structure of a GCM.  

Source: NOAA, 2012 

 

2.7.2 EARTH SYSTEM MODELS (ESM) 

Simulating all relevant aspects of the earth system is the aim of Earth System Models (ESMs). In 

addition to modelling the carbon cycle, dynamics of flora, atmospheric chemistry, and 

biogeochemical processes, the ESM, an expansion and more complex than their predecessors, 

the GCM (Foley, et al. 2013), also explores the interactions between cryospheric processes and 

climate (Heavens and Ward 2013) (Sueyoshi, et al. 2013) (Asch, et al. 2016). As such, it can 

dynamically adjust its response to other driving factors such as GHGs emissions. By including 

the global carbon cycle, we can show how climate regulates itself via feedbacks from the ocean 
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and the land that takes up some of the emitted CO2 and helps reduce global warming (Tjiputra, et 

al. 2010) (Anav, et al. 2013) (Schneider, et al. 2017).  

In addition, the sulphur cycle contributes to the formation of sulphate aerosols, which directly 

absorb sunlight (direct cooling effect) and indirectly modify the properties of clouds (indirect 

cooling effect) (Murphy, et al. 2014). ESMs may include other components, such as ozone 

(Sueyoshi, et al. 2013). A gap in global observational data makes it difficult to assess the 

biogeochemical component of an ESM (Ng, et al. 2016). As a result, the evaluation of the 

physical component is becoming increasingly complete and sophisticated. Although these 

models provide valuable information on future climate change, human activities, and potential 

mitigation actions, they also provide valuable information on climate variability and change 

trends (Sueyoshi, et al. 2013) (Kawamiya, et al. 2020). 

2.7.3 REGIONAL CLIMATE MODEL (RCM) 

RCM can integrate with a global model to provide more information about specific locations 

(Trzaska and Schnarr 2014) and simulate climate for selected regions at high resolution up to a 

hundred years in the future (Leung, et al. 2004) (Wang, et al. 2004). RCMs cover only a portion 

of the globe (Error! Not a valid bookmark self-reference.). Therefore, the model equations 

can be solved at a finer horizontal resolution (45 km or less) within a reasonable timeframe 

(Charron 2016). No doubt, local topography influences local climate change significantly 

(Centella-Artola, et al. 2015). According to Charron (2016), as GCMs use a relatively coarse 

spatial resolution, they cannot account for these local topographies. In order to avert a dangerous 

deterioration in the global climate, social and economic policies must be justified by assessing 

what the impact really will be in different countries. Moreover, a better understanding of regional 

processes is crucial to global research (IPCC 2007). 
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Figure 2-8: Dynamical downscaling of GCM data (coarse scale) to RCM data (fine scale). 

 

2.7.4 CLIMATE DOWNSCALING 

Global Climate Models, also known as Global Circulation Models (GCMs), are commonly used 

to generate climate data for future and past scenarios. Data or information at relatively coarse 

spatial and temporal scales can be classified as downscaled if it has been transformed into 

products at smaller scales (Maraun, et al. 2010) (Wilby and Fowler 2011) (Ng, et al. 2016). With 

the help of downscaling, these interactions can be modelled and relationships between the 

present-day climate and atmospheric conditions established. When evaluating climate change 

projections, it is crucial to consider seasonal fluctuations in precipitation because there may be 

more changes than annual averages can reflect (Sohoulande Djebou and Singh 2016). The vast 

majority of GCMs do not incorporate or provide information for scales smaller than a few 

hundred kilometres or two. GCMs have a low resolution of 150 to 30 kilometres by 150 to 300 

kilometres in most cases (Vavrus, et al. 2011) (UNFCCC 2018). RCMs simulate the climate 

features dynamically at a high resolution of 10 to 50 km in the context of varying atmospheric 

conditions at a domain boundary (Wilby, Troni, et al. 2009) (Teutschbein and Seibert 2012). 

Wilby and Fowler (2011) pointed out that the procedures for downscaling have been examined 

previously. 

GCMs are downscaled to examine local seasonal impacts. Downscaling GCMs can also be done 

in a variety of ways (PIRCA 2016, UNFCCC 2018). 

• The statistical downscaling predict how the future will change due to observed local 

climate and GCM data. Future variables of GCM projections are used for constructing 

statistical correlations and estimating future local climates (Maraun, et al. 2010). 
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Statistics downscaling utilises the statistical link between large-scale climate models and 

local observations (Xu, Han and Yang 2019). 

• Dynamical downscaling employs atmospheric physics in RCMs to make GCM 

projections more regionally relevant (Tang, et al. 2016). It necessitates the use of high-

performance computing resources to simulate how the climate responds to increased 

GHG concentrations using a limited-area high-resolution model driven by GCM 

boundary conditions (Tang, et al. 2016). 

2.7.5 CLIMATE SCENARIOS 

Climate scenarios are a plausible and often simplified view of future climate that explains the 

possible effects of anthropogenic climate change as described by the IPCC (2021). A climate 

scenario describes the evolution of the climate over an extended period in a logical and internally 

consistent manner (Charron 2016). Climate scenarios aid in climate change analysis, including 

climate modelling, impact assessment, adaptation, and mitigation while taking future population 

size, economic activity, and governance structure into account (Santoso, Idinoba and Imbach 

2008) (Mote, et al. 2011).  

The relationships between human choices, emissions, concentrations, and temperature change 

can be uncovered through the analysis of climate projections based on a range of plausible 

scenarios (van Vuuren, Edmonds, et al. 2011). While we may be able to achieve certain 

scenarios as long as we continue to consume fossil fuels, reducing emissions may lead to others. 

Other scenarios may merely entail an end goal or target, such as limiting cumulative carbon 

dioxide emissions at a certain level or stabilising global temperatures at a certain level. For 

example, under the Paris Agreement, GHG emissions will be drastically cut to keep annual 

global temperature increases to 1.5 degrees Celsius above pre-industrial levels by the end of the 

century, while also exploring measures to keep them below 2 degrees celsius (UNFCCC 2015). 

2.7.6 FUTURE EMISSIONS PATHWAYS 

The future emissions of GHG are affected by a wide range of factors (Meinshausen, Smith, et al. 

2011). Adaptation to climate change will depend on how the earth system responds and how 

humans respond through technology, economics, lifestyles, and policy changes. A set of 

scenarios was developed before the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change, known as Representative Concentration Pathways (RCP) (Moss, Edmonds, et 

al. 2010) (van Vuuren, Stehfest, et al. 2011).  

Two-decade history of developing scenarios is reflected in the RCPs. There are at least four 

significant differences between RCPs and previous sets of standard scenarios (van Vuuren, 

Edmonds, et al. 2011). First and foremost, RCPs are radiative forcing scenarios, not emissions 

scenarios. Among the four RCPs, there is a full range of scenarios, including climate policies and 

without policies (IPCC 2013). Each is numbered according to how the radiative forcing will 

change by 2100. Secondly, each RCP encompasses a range of emission trajectories with 

corresponding policies and technological strategies. RCPs are also useful for climate modellers 

as well as land use and land cover gridded trajectories. 
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One of the mitigation scenarios would reduce forcing to very low levels, an aggressive action 

plan for mitigating greenhouse warming (RCP 2.6) (van Vuuren, Stehfest, et al. 2011). There are 

also two medium stabilisation scenarios. At the upper end is a scenario with very high baseline 

emissions, a fossil fuel-intensive scenario with little emissions reduction, with CO2 

concentrations continuing to rise rapidly (RCP 8.5) (Moss, Babiker, et al. 2008). CO2 emissions 

in the RCP8.5 are comparable, although marginally lower than those of the highest Special 

Report on Emissions Scenarios (SRES) forcing scenario (A1FI) for the twenty-first century 

(Raper 2012). Specifically, RCP2.6, RCP4.x, RCP6.0, and RCP8.5 are named after a range of 

radiative forcing values in the year 2100 (Table 3-1). 

Table 2-3: Overview of representative concentration pathways (RCPs) (Meinshausen, Smith, et al. 2011) 

Description 
CO2 

Equivalent 

SRES 

Equivalent 
Publication 

RCP 8.5 

Pathway towards 8.5 W/m2 of radiative forcing by 

2100. According to this scenario, there is no climate 

policy baseline and relatively high GHGs emissions. 

1370 A1FI 

(Riahi, Grübler 

and 

Nakicenovic 

2007) 

RCP 6.0 

Stabilisation to 6 W/m2 by 2100 without 

overshooting. Compared to the number of mitigation 

scenarios leading to 6 W/m2, the number of baseline 

scenarios (no climate policy) represents this forcing 

level. 

850 B2 

(Fujino, et al. 

2006) (Hijioka, 

et al. 2008) 

RCP 4.x 

A stable trajectory without an overshoot of 4.x W/m2 

by 2100. Refers to the scenario in AR4 that consists 

of most of the assessed scenarios. 

650 B1 

(Smith and 

Wigley 2006) 

(Clarke, et al. 

2007) (Wise, et 

al. 2009) 

RCP 2.6 

There will be a peak in radiative forcing at ~ 3 W/m2 

before 2100, followed by a decline. The objective is 

to limit global mean temperatures to an increase of 

not more than 2C above pre-industrial levels. 

490 None 
(van Vuuren, et 

al. 2007) 

In comparison to the previous generation of climate models featured in the IPCC AR5, the sixth 

generation CMIP6 is a major improvement. The purpose of CMIP6 is to create a set of standard 

simulations for each model. By doing so, different models can be directly compared, so that 

future changes can be identified where models agree and disagree. The scenarios are a mix of 

Shared Socioeconomic Pathways and Representative Concentration Pathways forcing levels 

(RCP) (O’Neill, et al. 2017). An SSP1-1.9 scenario seeks to limit warming to below 1.5C by 

2100 above pre-industrial levels. According to SSP1-2.6, emissions would decline more 

gradually than under RCP 2.6, and the starting point would be higher. SSP5-3.4OS is an 

overshoot scenario (OS) in which emissions follow a worst-case RCP5-8.5 path until 2040. With 

the addition of SSP3-7.0 to CMIP6, a new scenario has been added, which lies close to the 

middle of the range of baseline outcomes produced by energy system models (Tebaldi, et al. 

2021). Climate models will now be able to explore impacts and changes at 1.5C warming under 
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new CMIP6 scenarios. New SSP scenarios started in 2014, while the older RCP scenarios began 

in 2007. 

3 METHODOLOGY 

This chapter introduces relevant data and tests it for homogeneity. The following sections (3.1.2 

and 3.1.3) demonstrate station data gathered from weather stations in The Bahamas, in addition 

to a gridded temperature and precipitation series reanalysed by NCEP/NCAR (Kalnay et al., 

1996) for comparison. A description of the mathematical approaches used to analyze climate 

data appears in Section 3.3. 

3.1 COUNTRY BACKGROUND 

The area chosen for this study encompasses the islands of The Bahamas. Many of the islands 

have undergone limited development and groundwater exploitation. 

3.1.1 LOCATION OF THE STUDY AREA 

Unlike the volcanic islands of the Antilles, The Bahamian archipelago (Figure 3-1) comprises 

about 700 islands and cays formed from limestone located on two large submerged banks’ 

northern and eastern boundaries and several smaller, more isolated banks (Young 2013). The 

archipelago is oriented northwest to southwest and extends about 6° of latitude (between 20.9° 

and 27.4°N), about 8° of longitude (between 72.5° and 79.3°W) across the Tropic of Cancer. 

Approximately half of the islands are located north of the Tropic of Cancer, which runs through 

Exuma and northern Long Island. The Bahamas stretches from about 50 miles (80 kilometres) 

east of Florida to about 50 miles (80 kilometres) northeast of Cuba (FAO 2015) (Buchan 2000). 

Between Grand Bahama Island (27.5°N) and Great Inagua Island (20°N), it runs more than 500 

miles (800 kilometres) southeast-northwest.  
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Figure 3-1: Map of The Bahamas 

 

Figure 3-2: Regions of The Bahamas 

 

3.1.2 TOPOGRAPHY  

The archipelago is low-lying, surrounded by coral reefs and vast sand flats. There are only about 

30 habitable islands and about 2,000 low, desolate rock formations. The Out (Family) Islands are 

the islands outside of New Providence. Mount Alvernia on Cat Island is the country’s highest 

point, rising 207 feet (63 meters) above mean sea level. New Providence Island’s highest point is 

only 125 feet (38 meters) above sea level. The major islands’ dominant physical features are 

large stretches of flat land with only a few feet of elevation. 

3.1.3 DEMOGRAPHICS TRENDS AND PATTERNS  

The total population increased from 304,913 in the 2000 census (BNSI 2009) to 351,461 in the 

2010 census (Lowe, et al. 2017). The population centres are dispersed extensively on each island, 

with 95% living on seven islands. The islands of New Providence, Grand Bahama, and Great 

Abaco have seen the most internal population shift (Lowe, et al. 2017). Major communities are 

usually found with a natural harbour or at least shipping accessibility. The country’s population 

growth rate is significantly higher than the Caribbean average. Also, the population has shifted 

dramatically from fishing and rural communities to tourist and economic hubs. According to the 

2019 Revision of World Population Prospects, The Bahamas’ population will increase to over 

450,000. 
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Figure 3-3: Bahamas: Total Population 

 

3.1.4 CLIMATE OF THE STUDY AREA 

Warm Gulf Stream waters contribute to the prevailing tropical marine climate of the Bahamas. 

Bermuda Azores anticyclone, which spans large regions of high air pressure in the subtropical 

North Atlantic Ocean, is the primary climate factor influencing the Bahamas. Statistically, winds 

are mainly from the east and southeast from May to September (summer), but mainly from the 

northeast and east the rest of the year (FAO 2015). Warm, humid, and sunny conditions prevail, 

with regional variations due to trade winds.  

The Bahamas is situated in the path of several developing weather systems. Among them are 

tropical waves and tropical cyclones, and migratory areas of persistent rain. The tropical cyclone 

season officially runs from June through November. However, the Bahamas are considered to be 

affected from mid-July through October. August, September, and October have the highest 

frequency of cyclone impacts or approaches within 100 miles of the Bahamas. 

Temperatures 

Winter temperatures in New Providence rarely fall below 15°C and frequently rise above 24°C 

in the afternoon. Summer temperatures frequently fall to 26°C or less at night and rarely rise 

above 32°C during the day. The northernmost islands have colder winters than New Providence. 

Temperatures in the Bahamas tend to be consistent during the summer.   
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Figure 3-4: Mean Monthly temperature pattern of The Bahamas 

 

Precipitation 

Because rainfall is the only source of freshwater for the islands, precise historical rainfall data is 

Because rainfall is the only source of freshwater for the islands, precise historical rainfall data is 

critical for future planning. The Department of Meteorology (BDM) has historical precipitation 

data for meteorological stations on a number of the larger islands in The Bahamas, including the 

Nassau, New Providence (LPIA) and Freeport, Grand Bahama Airports Weather Service Offices. 

These two stations provide the most comprehensive historical climatic data, going back to 1951 

for New Providence and 1967 for Grand Bahama.  

The archipelago’s average rainfall totals range from 600 mm in the drier southeastern islands to 

over 1600 mm in the northwestern section. The rainiest months are May to October (Figure 3-5), 

when temperatures are at their highest (Warm Gulf Stream waters contribute to the prevailing 

tropical marine climate of the Bahamas. Bermuda Azores anticyclone, which spans large regions 

of high air pressure in the subtropical North Atlantic Ocean, is the primary climate factor 

influencing the Bahamas. Statistically, winds are mainly from the east and southeast from May to 

September (summer), but mainly from the northeast and east the rest of the year. Warm, humid, 

and sunny conditions prevail, with regional variations due to trade winds.  

The Bahamas is situated in the path of several developing weather systems. Among them are 

tropical waves and tropical cyclones, and migratory areas of persistent rain. The tropical cyclone 

season officially runs from June through November. However, the Bahamas are considered to be 

affected from mid-July through October. August, September, and October have the highest 

frequency of cyclone impacts or approaches within 100 miles of the Bahamas. 

Temperatures 

Winter temperatures in New Providence rarely fall below 15°C and frequently rise above 24°C 

in the afternoon. Summer temperatures frequently fall to 26°C or less at night and rarely rise 

above 32°C during the day. The northernmost islands have colder winters than New Providence. 

Temperatures in the Bahamas tend to be consistent during the summer.   
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Figure 3-4). The cooler months of November to April experience limited rainfall as a result of 

the passing of northern winter frontal systems. Due to the influence of tropical storms, annual 

rainfall totals differ significantly from the norm. 

Climate variables such as seasonal and annual precipitation, mean sea level, and the occurrence 

of tropical cyclones all significantly impact the health and availability of resources on the 

islands. Climate change is expected to change these conditions. 

Figure 3-5: Mean Monthly rainfall pattern of The Bahamas 

 

3.2 DATA TYPES AND SOURCES 

The information needed for this research study was gathered from several sources, including 

international, regional and local hydrologists, government agencies, and online databases for 

retrieving both remote sensing data and peer-reviewed academic papers. 

The subsection discusses the data collection procedure, quality control measures, challenges 

faced in obtaining the data, the analysis method used, and finally, characteristics specific 

variables. 

A reliable assessment of the trends, temporal and spatial patterns of climate over the Bahamas 

requires data that cover decades. The data series must also contain a comprehensive or 

essentially comprehensive set of high-quality values (Manton et al., 2001). Several decades ago, 

the Bahamas possessed an extensive network of weather stations that measured various 

meteorological variables, including temperature, precipitation, and pressure. However, the 

majority of these stations are no longer operational. 

Table 3-1: Required Data Types and Sources 

No Data types Description Sources 

1 
Monthly 

rainfall 

Monthly observed rainfall data for the 

period from 1951-2021 was collected. 
BDM 
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2 

Monthly 

Tmax and 

Tmin 

temperature 

Monthly observed Tmax and Tmin 

temperature data was collected for the 

period from 1951-2021. 

BDM 

3 

DEM (30m 

spatial 

resolution) 

Is the main input for spatial data https://gadm.org/data.html 

4 
Herrera and 

Ault 

High-resolution precipitation and 

temperature products 

https://ecommons.cornell.edu/handle/1813/

58763 

5 CMIP6  
https://cds.climate.copernicus.eu/cdsapp#!/d

ataset/projections-cmip6?tab=form 

    

3.2.1 STATION DATA 

3.2.1.1 NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA).  

From the NOAA Climate Prediction Centre’s Caribbean Desk, it is possible to access the global 

data sets of all NOAA meteorological stations, including those in The Bahamas. Temperature 

measurements in degrees Celsius and precipitation measurements in millimetres are included in 

the climate dataset. The temperature data are the minimum and maximum monthly temperatures, 

while the precipitation data are monthly precipitation observations.  

3.2.1.2 BAHAMAS DEPARTMENT OF METEOROLOGY (BDM) STATION DATA 

Two weather stations within a few kilometres of the sea were chosen for this investigation, as 

shown in Table 2-1 because they have a considerable amount of historical meteorological data 

that is accurate and consistent. The BDM provided monthly rainfall data for New Providence 

(from January 1951 to August 2021) and Grand Bahama (from January 1970 to August 2021). 

The BDM also provided monthly temperature data for New Providence (January 1951 to 

September 2021) and Grand Bahama (January 1967 to September 2021). Climate data, such as 

temperature and rainfall, is scale data. Certain studies require categorical independent variables 

apart from correlations and regressions. 

3.2.1.3 HIGH-RESOLUTION CLIMATE DATA 

As reference observations, Ault and Herrera’s high-resolution temperature and precipitation 

products were compared to CMIP6 models. The data ranges from 1950 to 2015, with a 

horizontal resolution of 4 km. Ault and Herrera describe the downscaling techniques used to 

create these high-resolution gridded products in detail, including the statistical approach used to 

downscale each climatic variable and its validation. The scaled products are used because the 

typical resolution of the currently available observed gridded climate data for The Bahamas, and 

the Caribbean Islands is relatively coarse. 

https://gadm.org/data.html
https://ecommons.cornell.edu/handle/1813/58763
https://ecommons.cornell.edu/handle/1813/58763
https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6?tab=form
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3.2.2 DATA QUALITY AND SCREENING 

It is possible to find data in many formats, resolutions, and quality levels. Additionally, collected 

data may contain errors due to faulty measuring devices, errors in recording devices, or errors on 

the part of observers. So, data must be checked and errors removed using various tools before 

storing. Consequently, temporal data is preprocessed and filtered with EXCEL’s and IBM SPSS 

Statistics sophisticated capabilities in this study. The study used the Environmental Systems 

Research Institute’s (ESRI) ArcMap 10.8 software and Google Earth for all GIS-related tasks. 

Complete-time series is a requirement to study climate. Meteorological and hydrological time 

series are incomplete for a variety of reasons. A solution to this incongruence can be found by 

imputing missing values based on measurements from nearby climatic and hydrologic stations. 

The observation data sets from most climate stations are not completely accurate or complete. 

Often, data is lost or not available for a variety of reasons. Consequently, handling the data 

before starting the main process is essential. There were gaps in the data for several months and 

years, but they were not filled for the Mann-Kendall trend analysis since that particular trend 

analysis enables gaps in the data record to not affect the outcome. Quality control procedures 

from CLIMSoft was used on the data supplied from the Bahamas Department of Meteorology. 

The primary goal of this quality control technique was to discover mistakes in data processing, 

such as manual keying errors.  

The negative precipitation values are removed, and the daily maximum temperature is set to 

missing values if the maximum temperature is less than the minimum temperature. The daily 

maximum and minimum temperatures are also examined for outliers. These are values outside 

the user-defined range. Statistical tests, local knowledge, a study of station histories, and 

comparisons with nearby stations were all used to determine if an outlying precipitation 

measurement in New Providence was incorrect. 

Missing Data 

The initial check for missing values revealed two types of missing values in the data. The first 

problem encountered was incomplete precipitation and temperature measurements on previously 

recorded dates. It is likely that observations were missing because of human error, misplaced 

data, or incorrect transfer. Blocks of missing record dates with their respective measurements 

were the second type of missing value. Precipitation and temperature records and entire blocks of 

consecutive years were missing from several sites. 

3.2.3 CMIP6 MODEL DATA SET 

The World Climate Research Program (WCRP) and the ClimateData Store provided monthly 

observational and CMIP6 model products for temperature and precipitation over the Bahamas. 

CMIP6 data were obtained for the country’s future climate forecast and trend analysis under low 

forcing (sustainable development) scenario (SSP1-2.6), medium forcing (middle-of-the-road 

development) scenario (SSP2-4.5), medium to high forcing (regional rivalry) scenario (SSP3-

7.0), and strong forcing (fossil fuel-driven development) scenario (SSP5-8.5). Error! Not a 
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valid bookmark self-reference. summarizes CMIP6 products, including acronyms, resolution, 

and sources. 

For the near and long term, climate projections have been conducted using monthly mean 

temperatures and precipitation measurements over 30-year intervals for the baseline period 

derived from historical simulation (1985–2014). The non-parametric Mann-Kendall (MK) trend 

test method was used to determine their significance after examining the trend in temperature 

and precipitation. 

The Z-value determines whether or not a statistically significant trend exists. The statistics serve 

to assess the null hypothesis for no trend to the alternative hypothesis for a trend. A positive Z 

value indicates that the time series displays an upward trend, while a negative Z value suggests 

that the time series displays a downward trend. The analysis used three significance levels for 

each time series, namely low (0.1), medium (0.05), and high (0.01). A p-value for each 

significant level was then calculated. 

Table 3-2: Climate models used in the analysis and projection of the Bahamas climate from CMIP6. 

No. 
CMIP6 Model 

Name 
Modelling group and Country 

Horizontal 

Resolution 

Variant 

Label 

1 BCC-CSM2-MR Beijing Climate Center (China) 1.1° * 1.1° r1i1p1f1 

2 CNRM-CM6-1 France 1.4° * 1.4° r1i1p1f2 

3 CNRM-ESM2-1 France 1.4° * 1.4° r1i1p1f2 

4 CanESM5 
Canadian Centre for Climate Modelling and Analysis 

(Canada) 

2.8° * 2.8° r1i1p1f1 

5 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory (USA) 1.3° * 1° r1i1p1f1 

6 IPSL-CM6A-LR Institut Pierre Simon Laplace (France) 2.5° * 1.3° r1i1p1f1 

7 MIROC-ES2L 

Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for Marine-

Earth Science and Technology (Japan) 

2.8° * 2.8° r1i1p1f2 

8 MIROC6 Japan 1.4° * 1.4° r1i1p1f1 

9 MRI-ESM2-0 Meteorological Research Institute (Japan) 1° * 1° r1i1p1f1 

 

3.3 DATA ANALYSIS 

This study attempts to determine trends in temperature and precipitation over The Bahamas in 

the second half of the twentieth century and precipitation patterns over the country. 
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Meteorological data for 1980-2010 were analysed for any significant trends. The data collected 

were tabulated in MS-Excel and SPSS 26 and was used for data processing, data analysis and 

interpretation of the information collected. The results were also analysed for years with extreme 

precipitation and temperature in the same time frame. A series of graphs were developed with 

IBM SPSS software, and ArcGIS spatial analyst was used to create the maps presented in this 

study.  

Climatic trends detection 

Rather than relying on spatial correlation alone, the Kriging approach incorporates spatial 

correlation into the interpolation equation, whereas other interpolation techniques do not. The 

analytical method used is properly defined below. 

Linear regression 

Decision-makers can use regression to develop quantitative relationships between variables and 

assess the strength of those relationships. The relationship between an unknown variable and a 

known quantity is computed using regression analysis. The coefficient of determination (r2) 

represents the strength of the relationship between X and Y. For trends, time-series data were 

analyzed using simple linear regression analysis. When x is increased, y increases proportionally 

(slope). To determine a line, it must be measured above the origin (intercept), and the amount y 

increases when x is increased by the unit (slope). Temperature and rainfall trends were examined 

using regression analysis. 

Significance and stability testing 

Throughout this study, the significance of each trend is analyzed. Statistics defines an important 

finding as one that cannot have resulted from chance. A probability level of significance is a 

measure of how likely it is that a statistic would be observed, assuming the null hypothesis holds. 

Consequently, the significance level relates to the likelihood of a false positive or Type I error 

occurring when a null hypothesis is rejected. The null hypothesis is supported or rejected using a 

p-value. It provides evidence that poses a challenge to the null hypothesis. It is generally better to 

have a lower p-value. 

3.3.1 STATISTICAL SIGNIFICANCE TESTS  

The Statistical Package for the Social Sciences (SPSS), version 26.0 (IBM Corporation 2019), 

and MAKESENS 1.0 were used to analyze the statistical data. The independent and dependent 

variables must be categorical for the Chi-Square, Cramer's V, and Phi tests. On the other hand, 

other tests require scale data as a dependent variable. 

Trend analysis forecasts future outcomes by analyzing historical data. Statistical analysis was 

conducted in two phases to determine whether all independent meteorological factors increased 

or decreased over time (such as yearly and seasonal temperature, rainfall, etc.). The 

nonparametric Mann-Kendall test and the nonparametric Sens slope estimator are among the first 

two options. To determine whether the trend was rising or decreasing, we used normalized test 

statistics (Z) values. Trends are considered to be increasing when Z is positive and declining 
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when Z is negative. The slope of the trend determines the annual pace and direction of change 

(Salmi, et al. 2002) (Helsel and Hirsch 2002).  

The Mann-Kendall Test 

Hydrological data are rarely independent or have a normal distribution. Following consideration 

of various studies that focus on trend analysis of hydrological and climatic data series, the rank-

based non-parametric Mann-Kendall trend test was chosen for this study. Mann (1945) is known 

for his findings of trends, whereas Kendall (1975) is known for his discoveries of statistical 

distributions. The Mann-Kendall test has several advantages, including the fact that no specific 

distribution for the data is necessary, which allows for data gaps (Wilks 2019). Extreme data 

points do not affect the result due to the rank-based characteristic. The null hypothesis (H0) in 

this test was that there was no trend in precipitation over time, while the alternate hypothesis 

(H1) was that there was a trend (increasing or decreasing) over time. The Mann-Kendall statistic 

is expressed as follows: 

 

Spearman’s rho Test 

The Spearman’s rho test is a rank-based nonparametric trend analysis tool that was used to 

compare the Mann-Kendall test (Lehmann and D'Abrera 1975) (Sneyers 1990). The null 

hypothesis (H0) implies that there is no trend over time in this test, which assumes that time 

series data are independent and uniformly distributed; the alternate hypothesis (H1) indicates that 

there is a trend and that values rise or decrease with i (Yue, Pilon and Cavadias 2002). To 

calculate the Spearman rank correlation, use the following formula: 

𝑅𝑠𝑝 = 1 −  
6 ∑ (𝐷𝑖)

2𝑛
𝑖=1

𝑛 (𝑛2 − 1)
, 

𝑍𝑠𝑝 = 𝑅𝑠𝑝√
𝑛 − 2

1 −  𝑅𝑠𝑝
2 

Di is the difference in paired ranks, n is the entire length of the time series data, and Zsp is the 

Student's t-distribution with (n-2) degrees of freedom in these equations. Positive Zsp values 

indicate that the hydrologic time series trend is increasing, while negative values indicate 

decreasing. The critical value of t in the Student’s t-distribution table at a 0.05 significance level 

is t(n-2, 1 - a/2). If |Zsp| > t(n-2, 1 - a/2), (H0) is rejected, and the hydrologic time series shows a 

significant trend. 
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Sen’s Slope Estimator 

A nonparametric technique developed by Sen was used to estimate the size of trends in the time 

series data (Sen 1968): 

𝑄𝑖 =  
𝑥𝑗 − 𝑥𝑘

𝑗 − 𝑘
 

Data values at time j and k are represented by xj and xk in this equation. 

B𝑖 =  {

𝑄(𝑁+1)/2                  𝑁 𝑖𝑠 𝑜𝑑𝑑

1

2
(𝑄𝑁

2
 +  𝑄𝑁+2

2
)    𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

 

N is the number of calculated slopes. An upward trend is indicated by a positive Bi value, 

whereas a negative Bi value indicates a downward trend. 

3.4 LIMITATIONS 

Data availability is a significant limitation in most research, and The Bahamas’ inadequate data 

coverage is no exception. The lack of variety among meteorological stations (only synoptic 

stations) from the Department of Meteorology was the fundamental limitation in data collection. 

This constraint can be solved by utilising the online remotely sensed climatic time series. This 

investigation has no notable restrictions because data from remotely sensed climatic time series 

is often easy to access, and similar analyses have already been undertaken using the same 

datasets. Due to the high uncertainties associated with long-term predictions and computer 

resource constraints, climate projections appear to be limited in their ability to project into the 

future beyond a given time. 

The impact of climate change on freshwater availability, precipitation and potable water is a 

long-term study that will necessitate a considerable investment of time, resources, and scientific 

instruments and techniques. Because observations are rarely perfect, choosing the most 

dependable dataset is essential. Although radar analysis is the most reliable, it has only been 

available since the mid-2000s. Due to the minimal number of data points collected, various 

assumptions must be made to extract the most information from the time series. 

A variety of factors constrained this study, including lack of funds, the timing for the studies, and 

insufficient prior research training. Access to fully functional software was another limiting 

factor in this study. Several restricted trial software versions were utilized to conduct 

comparative analysis on the datasets. Although this study on precipitation and potable water 

included essential aspects of climate change impacts, it could not capture them all. 

Unfortunately, some factual information was not available. This study’s conclusions related to 

generalisation are limited without detailed and disaggregated data. 
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3.5 DEFINITION OF SPECIFIC PERIODS 

The time spans for analysing historical data from The Department of Meteorology were from 

1971 to 2020. The CMIP6 model analysis time spans are divided into three future periods: near-

term (2015 - 2040), mid-term (2041 - 2070), and long-term (2071 - 2100). Four seasons from 

four forcing scenarios were analyzed for future changes using measurements from the reference 

period (1995–2014). According to O'Neill et al. (2016) and Gidden, Riahi et al. (2019), the four 

seasons is winter (December–January–February; DJF), spring (March–April–May; MAM), 

summer (June–July–August; JJA), and autumn (September–October–November; SON). 

4 RESULTS AND ANALYSES 

Based on BDM data for The Bahamas, daily maximum temperature and rainfall records for the 

past 50 years (1971-2020) have been studied. This section presents the trend analysis results for 

two meteorological stations’ monthly, annual, and seasonal mean precipitation and temperature 

series. 

4.1 TEMPERATURE 

4.1.1 CHARACTERISTICS OF TEMPERATURES 

Maximum and minimum temperature data were found to show significant trends for both the 

annual and monthly observations from 1971 to 2020 (Figure 4-2 and Figure 4-3). During the 

period 1971-2020, the total annual and New Providence maximum temperature trend showed a 

warming trend; however, in Grand Bahama (Figure 4-4), the minimum temperature trend showed 

a cooling trend, and all results are statistically significant at 95% confidence limit. The increase 

in yearly temperature in the study area is due to an increase in the summer and autumn months, 

which offsets a minor reduction in other seasons, particularly the winter months. 
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Table 4-1: Statistical parameters of monthly, seasonal and annual maximum temperature time series for the two synoptic stations during 1971–2020. 

 N Mean 
S. E. 

Mean 
Range Std. Dev CV (%) Skewness Kurtosis Minimum Maximum 

January 46 26.691 0.1309 3.5 0.8878 3.3% -0.536 -0.411 24.7 28.2 

February 46 27.194 0.1479 4.4 1.0030 3.7% -0.114 -0.287 24.8 29.2 

March 48 28.229 0.1325 4.5 0.9178 3.3% 0.351 0.811 26.6 31.1 

April 48 29.649 0.1264 4.3 0.8757 3.0% 0.080 0.633 27.7 32.0 

May 48 31.049 0.1173 3.3 0.8123 2.6% 0.442 -0.361 29.7 33.0 

June 48 32.343 0.1011 3.9 0.7002 2.2% -0.033 0.836 30.3 34.1 

July 48 33.065 0.0923 2.8 0.6397 1.9% -0.412 -0.065 31.4 34.2 

August 48 33.135 0.0875 2.4 0.6062 1.8% -0.432 -0.579 31.9 34.2 

September 47 32.553 0.0807 2.3 0.5533 1.7% -0.037 -0.567 31.4 33.7 

October 47 31.270 0.0990 2.8 0.6788 2.2% -0.213 -0.439 29.7 32.5 

November 47 29.018 0.1172 3.7 0.8034 2.8% -0.090 -0.047 26.8 30.5 

December 47 27.444 0.1148 3.3 0.7871 2.9% 0.083 -0.378 25.9 29.3 

Annual 48 30.169 0.0685 1.9 0.4745 1.6% 0.113 -0.923 29.2 31.1 

Total 

Annual 
50 342.613 10.2604 373.1 72.5523 21.2% -4.478 19.774 0.0 373.1 

Winter 

(DJF) 
45 27.089 0.0894 2.6 0.5994 2.2% -0.124 -0.587 25.8 28.4 

Spring 

(MAM) 
48 29.642 0.0961 3.2 0.6656 2.2% 0.163 0.108 28.1 31.3 

Summer 

(JJA) 
48 32.848 0.0776 2.4 0.5379 1.6% -0.351 -0.452 31.6 34.0 

Autumn 

(SON) 
46 30.946 0.0777 2.2 0.5272 1.7% 0.225 -0.221 30.0 32.1 

Wet Season 50 29.636 1.2502 33.4 8.8404 29.8% -3.177 8.470 0.0 33.4 

Dry Season 45 28.036 0.0805 2.3 0.5398 1.9% 0.219 -0.413 26.9 29.2 
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Table 4-2: Statistical parameters of monthly, seasonal and annual minimum temperature time series for the two synoptic stations during 1971–2020. 

 N Mean 
S. E. 

Mean 
Range Std. Dev CV (%) Skewness Kurtosis Minimum Maximum 

January 46 13.797 0.2902 8.6 1.9680 14.3% -0.479 -0.357 8.3 16.9 

February 46 14.126 0.3142 8.4 2.1310 15.1% 0.361 -0.706 10.4 18.8 

March 48 15.178 0.2579 7.3 1.7870 11.8% 0.381 -0.494 11.9 19.2 

April 48 17.192 0.2283 6.6 1.5815 9.2% -0.530 -0.198 13.2 19.8 

May 48 19.435 0.1827 4.8 1.2661 6.5% -0.477 -0.775 16.6 21.4 

June 48 21.791 0.1961 7.1 1.3584 6.2% -0.492 1.303 18.3 25.4 

July 48 22.808 0.1227 4.3 0.8503 3.7% 0.377 0.586 20.9 25.2 

August 48 22.866 0.1308 4.1 0.9064 4.0% 0.149 -0.366 20.8 24.9 

September 47 22.385 0.1359 5.6 0.9315 4.2% -0.576 2.262 19.3 24.9 

October 47 20.470 0.1958 5.2 1.3424 6.6% 0.015 -0.965 17.5 22.7 

November 47 17.701 0.1973 6.3 1.3529 7.6% -0.180 0.220 13.9 20.2 

December 47 15.343 0.2657 8.5 1.8215 11.9% 0.622 0.358 12.1 20.7 

Annual 48 18.636 0.1378 4.1 0.9548 5.1% -0.124 -0.715 16.5 20.5 

Total 

Annual 
50 211.534 6.4431 242.3 45.5599 21.5% -4.223 18.291 0.0 242.3 

Winter 

(DJF) 
45 14.391 0.2318 7.1 1.5550 10.8% 0.090 -0.574 11.0 18.1 

Spring 

(MAM) 
48 17.268 0.1821 5.0 1.2616 7.3% -0.239 -0.535 14.7 19.7 

Summer 

(JJA) 
48 22.489 0.1253 4.0 0.8679 3.9% -0.019 -0.103 20.5 24.5 

Autumn 

(SON) 
46 20.183 0.1262 4.3 0.8559 4.2% -0.052 0.648 17.8 22.1 

Wet Season 50 19.881 0.8450 23.3 5.9753 30.1% -3.093 8.133 0.0 23.3 

Dry Season 45 15.538 0.1743 5.4 1.1691 7.5% -0.187 -0.372 12.4 17.8 
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Figure 4-1: Bahamas Average Monthly Temperature and Rainfall (1971-

2020) 

 

Figure 4-2: Trend of annual maximum in The Bahamas (1971 – 2020) 

 

Figure 4-3: Trend of annual minimum in The Bahamas (1971 – 2020). 

 

Figure 4-4: Trend of annual minimum in Freeport, Grand Bahama (1971 

– 2020) 
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Projected mean temperature changes 

            

Time series First year Last Year n Test Z Q B 

January 2021 2040 20 1.46 0.032 24.64 

February 2021 2040 20 1.01 0.022 24.22 

March 2021 2040 20 -0.75 -0.015 24.93 

April 2021 2040 20 -0.42 -0.007 25.54 

May 2021 2040 20 -0.29 -0.005 26.83 

June 2021 2040 20 1.20 0.026 28.17 

July 2021 2040 20 1.14 0.017 29.19 

August 2021 2040 20 1.46 0.016 29.67 

September 2021 2040 20 1.78 0.023 29.49 

October 2021 2040 20 1.07 0.015 28.54 

November 2021 2040 20 0.88 0.015 27.093 

December 2021 2040 20 1.91 0.025 25.722 

Annual 2021 2040 20 2.63 0.016 27.122 

Winter (DJF) 2021 2040 20 1.52 0.026 24.412 

Spring (MAM) 2021 2040 20 -0.36 -0.005 25.755 

Summer (JJA) 2021 2040 20 1.14 0.021 28.963 

Autumn (SON) 2021 2040 20 1.07 0.013 28.401 

Wet Season 2021 2040 20 1.52 0.013 28.653 

Dry Season 2021 2040 20 0.36 0.006 24.89 

4.1.2 PROJECTED TEMPERATURE CHANGES 

The annual average time series of MIROC-ES2L maximum temperature shows a rising trend for 

the SSP1-2.6, SSP2-4.5, SPP3-37, and SSP5-8.5 scenarios. Error! Not a valid bookmark self-

reference. below shows that warming will continue throughout the 21st century. Under SSP1-

2.6, SSP2-4.5, SPP3-3.7, and SSP5-8.5, the increasing trend in temperature across The Bahamas 

is anticipated to be 0.543°C, 0.86° C, and 1.2°C. Under SSP1-2.6, SSP2-4.5, SPP3-37, and 

SSP5-8.5, the increasing trend in temperature across The Bahamas is anticipated to be 0.087°C, 

0.543°C, 0.86° C, and 1.2°C. 

The following maps (Figure 4-6 to Figure 4-9) depicts the spatial distribution of expected 

increases in MIROC-ES2L mean annual maximum temperature for SSP1-2.6, SSP2-4.5, SSP3-

7.0, and SSP5-8.5 scenarios across the Bahamas. For the medium and long term, all future 

climate scenarios except the low forcing scenario (SSP1-2.6) show increased warming over The 

Bahamas compared to the baseline (1995–2014) climate. According to both short- and long-term 

projections, warming is more evident in the southeastern portions of the country than in the 

northern parts. 
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Figure 4-5: MIROC-ES2L model mean maximum temperature (°C) projections under SSP1-2.6, SSP2-4.5, 

SSP3-7.0, and SSP5-8.5 scenarios. 
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Figure 4-6: CMIP6-MIROC-ES2L SSP1-2.6 

Near Term Monthly Mean Maximum 

Temperature (°C) 

 
a) 21.3 - 33.0°C  

Figure 4-7: CMIP6-MIROC-ES2L SSP2-4.5 

Near Term Monthly Mean Maximum 

Temperature (°C) 

 
b) 21.9 - 32.1°C 

Figure 4-8: CMIP6-MIROC-ES2L SSP3-7.0 

Near Term Monthly Mean Maximum 

Temperature (°C) 

 
c) 21.6 - 32.6°C 

Figure 4-9: CMIP6-MIROC-ES2L SSP5-8.5 

Near Term Monthly Mean Maximum 

Temperature (°C) 

 
d) 19.5 - 29.6°C 

The spatial distribution of CMIP6-MIROC-ES2L model monthly mean maximum 

temperature (°C) scenarios over The Bahamas for the near-term projections (2015–

2040). The monthly mean maximum temperature spatial distributions for four SSP 

scenarios appear identical, but the range of values differ. 

4.2 PRECIPITATION 

4.2.1 OBSERVED CHARACTERISTICS OF PRECIPITATION 

Monthly descriptive statistics were computed during the study period: total rainfall, minimum 

and maximum rainfall, mean, range, variance, standard deviation, skewness, kurtosis, and 

minimum and maximum rainfall.  

The essential characteristics of the monthly precipitation time series for the two synoptic stations 

from 1971 to 2020 are summarized in Error! Not a valid bookmark self-reference.. The 

abnormal distribution of rainfall data series is detected by measuring skewness and kurtosis 

quantities. Hare (2003) defines CV as low (CV less than 20%), moderate (CV greater than 20% 
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and less than 30%), high (CV greater than 30%), or very high (CV greater than 40%), and CVs 

greater than 70% indicate exceptionally high inter-annual rainfall variability. Observations 

indicate that all of the months had a coefficient of variation (CV) greater than 40%, suggesting a 

very high degree of precipitation variability throughout the zone. 

Table 4-3: Statistical parameters of monthly, seasonal and annual precipitation time series for the two 

synoptic stations during 1971–2020 

 N Mean 
S. E. 

Mean 
Range Std. Dev CV (%) Skewness Kurtosis Min Max 

January 48 59.67 7.80 298.70 54.07 90.6% 2.56 8.59 3.30 302.01 

February 48 55.52 5.47 230.76 37.89 68.2% 2.32 9.50 2.54 233.30 

March 50 65.99 7.16 203.33 50.61 76.7% 1.23 0.89 2.54 205.87 

April 50 68.77 7.49 294.51 52.99 77.1% 2.07 6.64 5.84 300.36 

May 50 124.56 11.75 336.04 83.06 66.7% 1.30 1.12 30.10 366.14 

June 50 195.85 12.04 373.63 85.14 43.5% 1.00 0.87 72.39 446.02 

July 50 167.09 9.74 274.96 68.90 41.2% 0.35 -0.49 53.59 328.55 

August 50 209.08 9.44 308.36 66.76 31.9% 0.65 0.60 83.69 392.05 

September 50 203.25 9.00 322.58 63.62 31.3% 1.00 1.37 79.76 402.34 

October 50 148.40 11.18 303.28 79.06 53.3% 0.36 -0.73 16.26 319.53 

November 50 81.66 7.29 230.51 51.57 63.1% 0.95 0.76 3.56 234.06 

December 50 58.05 5.15 177.29 36.45 62.8% 1.11 1.59 4.70 181.99 

Annual 50 120.23 2.82 92.17 19.96 16.6% 0.53 0.62 82.98 175.15 

Total 

Annual 
50 1433.28 34.64 1106.04 244.94 17.1% 0.56 0.44 995.81 2101.85 

Winter 

(DJF) 
50 55.57 4.46 182.20 31.54 56.8% 1.86 5.35 3.81 186.01 

Spring 

(MAM) 
50 86.44 5.31 158.67 37.57 43.5% 0.74 0.19 25.23 183.90 

Summer 

(JJA) 
50 190.67 6.49 212.51 45.86 24.1% 1.12 1.21 121.88 334.39 

Autumn 

(SON) 
50 144.98 6.02 207.65 42.60 29.4% 1.09 1.52 76.67 284.31 

Wet 

Season 
50 174.93 4.90 165.33 34.65 19.8% 0.90 1.01 115.68 281.01 

Dry 

Season 
50 63.44 3.51 126.13 24.85 39.2% 0.44 0.90 8.28 134.41 

 

4.2.1.1 PRECIPITATION DATA ANALYSIS 

This subsection contains the findings of the trend analysis for monthly, yearly, and seasonal 

mean precipitation series. 

Monthly Trend 

The results of the MAKESENS analysis show that in January, February, March, August, 

October, November and December, there is a ‘decreasing trend.’ April, May, June, July, and 

September show an ‘increasing trend.’ There is a substantial change for April and September 

(95% significance level). According to Sen’s slope estimator calculation, there is a significant 
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increasing trend in April, June, and September. There is a clear significant negative trend in 

November. 

Annual Trend 

The Bahamas’ average annual rainfall was 2821.83 mm, according to statistics collected (Figure 

4-11) over a five-decade period (1971-2020). During the study period, the minimum average 

annual rainfall of 1261.36 mm occurred in 2011, whereas the maximum of 4203.70 mm occurred 

in 2020. Three out of 50 years had excess precipitation (>3518 mm), while four years had 

deficient rainfall. Over the course of 50 years, an average amount of precipitation was observed 

in 43 years. 

According to Figure 4-12, Sen’s slope estimate is close to parallel to the x-axis, suggesting more 

consistency in average annual rainfall. Furthermore, the plot displays 95% and 99% confidence 

intervals, showing that annual rainfall is relatively consistent. For the last 50 years, there was a 

variability of the annual rainfall (Error! Not a valid bookmark self-reference.). 

Figure 4-10: Annual rainfall variability pattern of The Bahamas (1971–2020). 
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Figure 4-11: Average annual rainfall in The Bahamas (1971 – 2020) 

 
 

Figure 4-12: Trend of annual rainfall in The Bahamas (1971 – 2020) 
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Table 4-4: Mann-Kendall and Sen’s slope estimator results (1971 – 2020) 

   Mann-Kendall Test statistic  Sen's slope estimate 

Time series First year Last Year n Test Z Q B 

January 1971 2020 50 -0.58 -0.314 98.49 

February 1971 2020 50 -0.83 -0.530 123.77 

March 1971 2020 50 -1.07 -0.876 141.52 

April 1971 2020 50 1.93 1.496 45.93 

May 1971 2020 50 0.77 1.034 136.04 

June 1971 2020 50 0.90 1.588 272.57 

July 1971 2020 50 0.33 0.508 290.45 

August 1971 2020 50 -0.72 -1.080 444.56 

September 1971 2020 50 1.35 1.548 316.02 

October 1971 2020 50 -0.32 -0.625 296.15 

November 1971 2020 50 -1.34 -1.211 189.02 

December 1971 2020 50 -1.16 -0.910 141.09 

Annual 1971 2020 50 0.32 0.998 2798.7 

The Mann Kendall technique was employed to see if the notice variable has a monotonic 

increasing or falling trend over time. The findings of the statistical tests that were used are 

described in (Table 4-4). Significant monthly precipitation trends are identified statistically, and 

this finding is statistically significant at the 95% confidence level from 1971 to 2020. Monthly 

and periodic rainfall data were also subjected to trend analyses (Table 4-4). At the 95% 

confidence level, precipitation patterns indicate a positive trend over periods. However, during 

the five decades (1971-2020), a large reduction in winter precipitation is statistically significant 

at the 90% confidence level. During the summer months, precipitation was higher than in the 

winter, according to the trend analysis. 

Quarter Century Trend 

The data then was separated into two sections, with the first covering 1971 to 1995 and the 

second period covering 1996 to 2020. The Bahamas had an average annual rainfall (a.a.r) of 

3579.39 mm in the first. In 1974, the minimum average annual rainfall was 1991.6 mm, while 

the maximum average annual rainfall of 4188.21 mm occurred in 1995.  Excess precipitation 

(>3579.39 mm) and deficient rainfall both occurred once out of the 25 years.  

According to the second-period study, The Bahamas’ average annual rainfall was 2780.14 mm, 

which is somewhat higher than the first period’s mean rainfall. In 2011, the minimum average 

annual rainfall was 1261.36 mm, while the maximum average annual rainfall was 4203.70 mm in 

2020. Excess precipitation (>3475.17 mm) happened in 2 of the 25 years studied, while deficient 

rainfall occurred in 3 of the 25 years studied. In the Bahamas, regular rainfall (range 2085.10 

mm to 3475.17 mm) happened 23 times out of 25 years, showing that the average annual rainfall 

is normal. 

Based on the trend statistics ‘Z’ values of the Mann-Kendall test for the first period, except for 

May, October, and December, all of the months and seasons of the year showed an increasing 
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trend. For the second period, the ‘Z’ statistics demonstrate that most of the months and seasons 

exhibit a negative trend except for April, May, July, August, and October. 

Figure 4-13: Trend of annual rainfall in The Bahamas (1971 – 1995) 
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Figure 4-14: Trend of annual rainfall in The Bahamas (1996 – 2020) 

 

Table 4-5: Trend analysis of quarter-century rainfall 

   1971 – 1995  1996 - 2020  

Time series Test Z Q B Test Z Q B 

January 1.56 3.231 -7.33 -1.14 -1.933 186.72 

February 0.58 0.993 79.31 -0.21 -0.438 118.03 

March 1.56 3.382 3.11 -2.22 -4.955 382.52 

April 2.73 7.502 -116.57 1.75 3.660 -91.99 

May -0.40 -2.698 281.26 1.24 6.847 -176.78 

June 0.68 1.959 251.71 -0.44 -1.376 450.15 

July 0.49 2.909 219.36 1.24 5.076 53.80 

August 0.54 3.502 304.55 0.35 1.807 270.14 

September 0.49 1.295 317.71 -0.68 -2.413 530.35 

October -0.44 -2.215 370.8 0.63 4.630 -0.2487 

November 1.00 3.812 53.037 -0.30 -0.479 129.38 

December -1.14 -3.094 207.19 -0.16 -0.296 102.95 

Annual   0.96 11.082 2412.7 0.30 1.135 2835.3 

Decadal Trend 

This analysis divides the data into five groups, one for each decade. A comparison of the Mann-

Kendall test ‘Z’ value and Sen’s Estimator values of ‘Q’ and ‘B’ is shown in Tables 5 to 7 and 

Figures 18 to 22. June, November, and December have shown a downward tendency in the first 

decade, from 1971 to 1980. February, March and December have shown decreasing trend in the 

second decade from 1981 to 1990 and the next two decades showed the most decreasing trends. 

Half of the months (January, February, April, June, August and November ) in the third decade 
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showed a decreasing trend from 1991 to 2000. Most months from 2001 to 2010 showed a 

decreasing trend except for February, April, September, and December. Only one month 

(September) showed a decreasing trend in the decade 2011 to 2020. 
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Figure 4-15: Decadal variations of a.a.r (71-80) 

 

Figure 4-16: Decadal variations of a.a.r (81-90). 

 

Figure 4-17: Decadal variations of a.a.r (91-2000) 

 

Figure 4-18: Decadal variations of a.a.r (2001-10). 

 

-2000.00

-1000.00

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

1970 1975 1980

D
e
c
a
d

a
l 

A
n

n
u

a
l 

 R
a
in

fa
ll
 

(m
m

)

Year

Data Sen's estimate
99 % conf. min 99 % conf. max

-1000.00

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

1980 1982 1984 1986 1988 1990

D
e
c
a
d

a
l 

A
n

n
u

a
l 

 R
a
in

fa
ll
 

(m
m

)

Year

Data Sen's estimate

99 % conf. min 99 % conf. max

-2000.00

-1000.00

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

1990 1992 1994 1996 1998 2000

D
e
c
a
d

a
l 

A
n

n
u

a
l 

 R
a
in

fa
ll
 

(m
m

)

Year

Data Sen's estimate

99 % conf. min 99 % conf. max

-2000.00

-1000.00

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

2000 2005 2010

D
e
c
a
d

a
l 

A
n

n
u

a
l 

 R
a

in
fa

ll
 

(m
m

)

Year

Data Sen's estimate

99 % conf. min 99 % conf. max



 

50 

 

Figure 4-19: Decadal variations of a.a.r (2011-20). 
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Figure 4-20: Decadal statistical data from 1971-80 & 1981-90. 

 Decadal I; 1971 - 1980 Decadal II; 1981 - 1990 

Time series Test Z Q B Test Z Q B 

January 0.89 4.064 -16.64 0.18 1.619 22.34 

February 0.00 -2.540 166.37 -0.72 -3.556 216.03 

March 0.00 -0.445 69.60 -0.36 -9.059 486.16 

April 1.97 11.430 -221.11 0.18 4.699 -51.12 

May 0.00 -6.604 389.64 1.07 4.318 9.40 

June -0.54 -16.034 743.82 0.89 9.059 -25.61 

July 0.36 5.461 199.96 0.72 9.017 35.56 

August 0.00 -0.222 417.43 0.72 17.272 -193.42 

September 0.18 1.981 332.99 0.00 0.818 283.28 

October 1.07 26.815 -288.54 0.18 2.395 83.53 

November -0.18 -1.524 204.6 0.00 0.508 115.19 

December -0.36 -2.096 185.39 -0.54 -16.341 701.25 

Annual   0.89 36.407 2108.2 0.00 10.470 2257.7 
 

Figure 4-21: Decadal statistical data from 1991-2000 & 2001-2010 

 Decadal I; 1991 - 2000 Decadal II; 2001 - 2010 

Time series Test Z Q B Test Z Q B 

January -0.54 -10.008 612.47 -1.79 -6.350 412.75 

February -0.72 -5.525 357.60 0.00 -0.127 101.22 

March 0.00 0.435 98.61 -1.25 -16.408 1003.40 

April -1.61 -14.351 776.03 0.36 3.112 -98.23 

May 0.00 -2.258 266.83 -0.72 -14.079 951.67 

June -0.18 -4.499 700.39 -0.54 -12.002 987.08 

July 0.36 3.588 156.00 -0.89 -12.446 940.82 

August -0.18 -6.985 726.82 -0.54 -12.700 992.38 

September 0.00 0.339 379.14 0.18 4.953 143.95 

October 0.36 11.176 -209.42 -0.18 -10.287 782.83 

November -1.79 -19.262 1031.8 -1.61 -18.987 1149.4 

December 0.89 5.221 -160.98 0.00 -0.593 126.62 

Annual   -0.54 -42.599 5009 -1.07 -84.455 7133.9 
 

Figure 4-22: Decadal statistical data from 2011-2020 

 Decadal I; 2011 - 2020 

Time series Test Z Q B 

January 1.43 16.002 -940.05 

February 0.00 0.254 75.82 

March 0.89 2.794 -118.36 

April 0.18 2.286 27.81 

May 0.72 26.353 -1384.90 

June 1.79 27.009 -1337.52 

July 0.89 17.780 -762.00 

August 1.97 22.860 -1058.67 

September -0.18 -16.459 1417.549 

October 1.07 30.124 -1645.08 

November 0.89 8.255 -414.084 

December 1.43 6.576 -354.598 

Annual   0.89 105.071 -3824.69 
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4.2.2 PROJECTED PRECIPITATION CHANGES 

Anthropogenic climate change is not likely to result in uniform changes in hydroclimate across 

the islands by the end of the twenty-first century (e.g., between 2050 and 2100). The spatial 

distribution of BCC-CSM-2MR projected changes in mean precipitation for the four forcing 

scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) over The Bahamas is shown below 

(Figure 4-23 to Figure 4-30). As far as the future precipitation patterns are concerned, wetter 

conditions are predicted for the Northern Bahamas under SSP1-2.6 and SSP2-4.5 but shift to the 

Central Bahamas under SSP5-8.5 over both near and long-term periods. For near and long-term 

scenarios of BCC-CSM-2MR (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), we show in Figure 

4-23 to Figure 4-30 the spatial distribution of changes in precipitation over the country using 

kriging interpolation. A northerly shift in precipitation patterns can be observed across all parts 

of the country during the near-term periods under SSP1-2.6 and SSP3-7.0 scenarios. The 

opposite happens during the long-term under SSP2-4.5 and SSP5-8.5 scenarios, where the 

pattern shifts southward. The projected changes in the northern portion of the country will have 

lower precipitation than the central and southern parts of the country under the near-term SSP5-

8.5 forcing scenario. 
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Figure 4-23: CMIP6-BCC-CSM2-MR 

SSP126 Near-Term Mean 

Precipitation(mm/month) 

 
a) Rainfall (10.41 - 127.70 mm) 

Figure 4-24: CMIP6-BCC-CSM2-MR SSP2-

4.5 Near-Term Mean 

Precipitation(mm/month) 

 
b) Rainfall (27.78 - 137.13 mm) 

Figure 4-25: CMIP6-BCC-CSM2-MR SSP3-

7.0 Near-Term Mean 

Precipitation(mm/month) 

 
c) Rainfall (15.66 - 128.67 mm) 

Figure 4-26: CMIP6-BCC-CSM2-MR SSP5-

8.5 Near-Term Mean 

Precipitation(mm/month) 

 
d) Rainfall (26.70 - 233.46 mm) 
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Figure 4-27: CMIP6-BCC-CSM2-MR SSP1-

2.6 Long-Term Mean 

Precipitation(mm/month) 

 
a) Rainfall (11.39 – 131.14 mm) 

Figure 4-28: CMIP6-BCC-CSM2-MR SSP2-

4.5 Long-Term Mean 

Precipitation(mm/month) 

 
b) Rainfall (14.61 – 116.02 mm) 

Figure 4-29: CMIP6-BCC-CSM2-MR SSP3-

7.0 Long-Term Mean 

Precipitation(mm/month) 

 
c) Rainfall (3.18 – 161.33 mm) 

Figure 4-30: CMIP6-BCC-CSM2-MR SSP5-

8.5 Long-Term Mean 

Precipitation(mm/month) 

 
d) Rainfall (17.45 – 247.38 mm) 

5 DISCUSSION  

5.1 HISTORICAL METEOROLOGICAL DATA FROM BDM 

Concerning the first question regarding analysis of observed data during the last 50 years from 

meteorological stations in the northern region of The Bahamas, the coefficients of variation of 

the temperatures and precipitation ranged from 1.6 – 3.7% for maximum temperatures, 3.7 – 

15.1% for minimum temperatures, and 31.3 – 90.6% for precipitation. The coefficient of 

variation depicts the high degree of variability in precipitation. However, an examination of 

historical temperature data reveals rising trends. Mann-Kendall monotonic trend analysis found a 

warming trend at maximum temperatures, while a slight cooling trend was observed at the 

minimum temperatures.  

Throughout the year, precipitation is not uniformly distributed. In the winter, frontal systems 

dominate, while convective storms dominate in the summer. The planetary wind pattern affects 

average annual precipitation and evaporation peaks in the summer and drops in the winter. The 

highest monthly precipitation occurs from May to October, while the lowest occurs in February. 
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June to October has the most elevated monthly temperatures, with January and February the 

lowest. 

The statistical characteristics of historical yearly, seasonal, and monthly rainfall (Table 4-3), as 

well as maximum and minimum temperature (Table 4-1 and Table 4-2 respectively), were 

investigated. The results show that the data are normally distributed, despite the slight positive 

skewness. In terms of rainfall variability, the summer months have a lower coefficient of 

variation, which implies that June to September is the most consistent. In contrast, January and 

April had the highest CVs, with 90.6% and 77.1%, respectively. The rest of the months had a 

similar rainfall trend, indicating little fluctuation during the research period. 

5.2 CLIMATE CHANGE PROJECTIONS 

Choosing a specific model for a given study topic is subjective and complex. The majority of 

CMIP6 models can simulate The Bahamas’ primary climate variables. CMIP6 models used in 

the study showed excellent agreement between precipitation and temperature based on the BCC-

CSM-2MR and MIROC-ES2L models, respectively.  

There have not been many studies specifically for The Bahamas, but most studies for the 

Caribbean basin projected an apparent increase in temperatures by the end of the twenty-first 

century (Centella-Artola, et al. 2015) (Campbell, Taylor and Bezanilla-Morlot, et al. 2021) 

(Vichot-Llano, et al. 2021). On the other hand, precipitation major determinants fluctuate across 

the basin at subregions of the country, making forecasting challenging. These studies used a 

diverse set of time periods, quantities, climate models, emission scenarios, and downscaling 

methods. As a result, drawing broad conclusions is difficult. 

According to projections from SSP2-4.5, SSP3-7.0, and SSP5-8.5 forcing scenarios, the annual 

precipitation over the Northwest and Central Bahamas depicts a drier response compared to the 

present climate. The magnitude and frequency of this change increase over time in proportion to 

the radiation forcing strength. While precipitation shifts during winter and spring have been 

consistent with the annual pattern, summer and autumn precipitation response has been 

inconsistent (Figure 7-1 to Figure 7-32). The change in precipitation over the entire country will 

be negative by the end of the twenty-first century, according to the SSP5-8.5. 

According to Centella-Artola, et al. (2015), the annual precipitation cycle is very similar to the 

regional cycles. As Campbell, Taylor, and Stephenson, et al. (2011) predicted, SRES climate 

simulations A2 and B2 expect a decrease in future precipitation over Caribbean countries, 

including the Bahamas. Nevertheless, the country’s complexity warrants further investigation 

since past research has found significant differences between precipitation patterns in the 

northwestern and southeastern regions of the country (Taylor, Clarke, et al. 2018). 

In general, the magnitude of radiative forcing correlates with the effect of warming, with the 

fastest increase occurring under SSP5-8.5 and a slower increase under SSP1-2.6. Nearly all 

regions in the country under SSP1-2.6 saw their temperatures decline after 2070 since radiative 

forcing decreased gradually after peaking before 2070. A high-emission scenario is associated 

with greater uncertainty in temperature change trajectory than the other scenarios. As the century 
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draws to a close, uncertainties increase, irrespective of the scenario. Under both SSP3-7.0 and 

SSP5-8.5 scenarios, the spread is expected to rise most slowly, but nevertheless significantly, 

during the twenty-first century. Research utilizing CMIP5 models has previously yielded similar 

findings (Vichot-Llano, et al. 2021). 

5.3 CONSEQUENCES FOR WATER RESOURCES 

The third question is the likely and the expected consequences for water resources. The Bahamas 

already has a vulnerability and scarcity of freshwater resources. Surface water runoff is 

moderately low, and there are no freshwater rivers due to very small altitudes in the Bahamian 

islands (ICF Consulting 2008). Thin ‘lenses’ of freshwater are deposited and preserved through 

precipitation on top of shallow salt water, less than two metres below the ground surface. 

Sea-level rise is already causing a problem for The Bahamas, where aquifers are experiencing 

high levels of salt intrusion (Gulley, et al. 2016). The freshwater lens in the reservoir will 

diminish as saline levels rise, and the water quality will degrade. The Bahamas has been affected 

by previous flooding from extreme weather events, resulting in pollutants such as seawater and 

sewage in groundwater. The most recent example was Hurricane Dorian’s passage in 2019 in the 

Northern Bahamas (Deopersad, et al. 2020). Rising sea levels may make it increasingly difficult 

to address these challenges. Water supply interruptions caused by climate change would have 

economic effects and significantly impact human health and well-being (Corvalan, et al. 2005). 

Stakeholders in the water industry must be better trained to detect and respond to climate change 

concerns. 

Finally, this study evaluated whether climate-resilient adaptation strategies exist in The Bahamas 

or should be developed to lessen climate change's adverse effects. The Bahamas identified the 

water sector for adaptation to climate change as a national priority, as part of its first Nationally 

Determined Contribution (NDC) (GoB 2016), and previously as part of the National Climate 

Change Adaptation Policy (GoB 2005). Unfortunately, The Bahamas do not have a very 

coordinated national water plan or strategy that recognizes and guides the needs of other sectors 

and stakeholders despite the significance of the water sector to the country or its climate change 

and development policies. A revised legal framework for the water sector is needed to address 

changing (physical and institutional) conditions and challenges. 

6 CONCLUSION 

According to many studies, the increase of anthropogenic greenhouse gases in the atmosphere is 

projected to cause hydroclimatic changes in The Bahamas through the twenty-first century. 

Climate predictions are increasingly crucial for effective decision-making and appropriate 

adaptation methods using high-resolution climate models. A deeper understanding of climate and 

hydrological processes at a smaller scale is necessary to meet the diverse water resource 

requirements of the Bahamas. The study was conducted to accomplish the primary objective of 

examining the impacts of climate change on precipitation and potable water resources in the 

Bahamas. All of the posed research questions were addressed during the study.  
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The study examines past and future climate forecasts using data gathered from The Bahamas 

Department of Meteorology and the sixth phase of Coupled Model Intercomparison Project 

(CMIP6) socioeconomic scenarios. Community scenarios, or SSPs, lie at the core of the CMIP6. 

They differ from the CMIP3, and CMIP5 in that future scenarios begin in a different year, 

including a new set of emission and land-use criteria. In this study, CMIP6 models were used to 

assess the baseline period derived from historical simulation (1985–2014) and future climate 

change means for three time periods (near term (2015–2040), the midterm (2041–2070) and the 

long term (2071–2100)) based on climate projections under four SSP-RCP scenarios (SSP1-2.6, 

SSP2-4.5, SSP3-7.0 and SSP5-8.5). This study aims to review some fundamental vulnerability 

problems related to current and prospective future hydrological responses resulting from climate 

change and identify areas where more research is needed. 

Despite widespread recognition of climate change, relatively little research has been done on its 

impact on groundwater. Only if historical data is available can the characteristics of climate 

change be studied. Only two stations in The Bahamas have continuous data dating back over five 

decades, making historical data challenging to come by. Furthermore, the driving forces 

responsible for such changes are still uncertain. To understand how climate change, precipitation 

patterns, and the loss of fresh groundwater resources affect the different regions of the Bahamas, 

we need to understand their relationships.  

The findings in this study revealed from an analysis of fifty years of Department of Meteorology 

ground station data showed a coefficient of variation ranging for temperature (precipitation) from 

3.7% to 15.1% (31.3 to 90.6%). A high coefficient of variance underscores the variability of 

precipitation. Temperature records indicate that rising trends have been detected based on 

temperature data analysis. According to the Mann-Kendall trend analysis test, the maximum 

temperature examination resulted in an overall warming trend, but the minimum mean 

temperature resulted in a cooling trend. 

The study also found that the CMIP6 projects a continuous increase in temperature over The 

Bahamas under all scenarios. According to the high emissions scenario SSP5-8.5, the country 

temperature is expected to increase by approximately 5°C. An essential aspect of the study is an 

increase in aridity resulting mainly from a substantial reduction in annual mean precipitation, 

especially under the high emission scenario SSP5-8.5.  

The Bahamas, in particular, a developing country and a member of the SIDS nations, is more 

susceptible to severe climate changes than developed countries. Since country’s socioeconomic 

systems cannot adequately adapt to climate variability, they are particularly vulnerable. 

Therefore, the country’s variability in temperature and precipitation should be considered in the 

design of climate change adaptation strategies. 

There is a direct relationship between climate variability and surface waters, including changes 

in air temperatures, precipitation, and evapotranspiration. However, climate variability 

interacting with groundwater is more complex and poorly understood. Groundwater levels may 

fluctuate more frequently and for a more extended period due to rising sea levels and a reduction 

in infrastructure and resources in coastal areas, leading to saline intrusion into coastal aquifers. 
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Consequently, convincing potable water stakeholders, planners and development organizations 

to consider the impact of climate change in their projects and water resource systems can be very 

difficult on occasions. Considering that climate change may negatively affect water supplies, it 

would be prudent to perform further investigations and assessments to determine the extent of 

difficulties that the country may face. When communicating the results, it is important to explain 

the uncertainties related to climate change on water resources. This will be useful when 

developing adaptation strategies for various ecological zones and climate scenarios. Water 

availability and hydrology are projected to affect policy significantly, with well-established 

trends that should be factored into future planning. 

This study found that outdated data on freshwater water resources were frequently encountered 

(Alternative sources need to be explored to compensate for the decline in groundwater resources, 

especially in New Providence. According to FAO (2015), desalination is becoming more 

popular, and it will most certainly continue to do so. The availability of fresh groundwater is 

decreasing, while water demands are increasing. FAO (2015) further explained that rainwater 

catchment is infrequently employed, providing only 3% or less of the total water supply. The 

depletion of resources and quality deterioration are two separate but interrelated problems. A 

decline in groundwater quality can be caused by pollution and excessive extraction. 

Table 2-2) and unreliable, so this should be addressed immediately by stakeholders in the water 

industry to coordinate and respond to climate change more effectively. The climate change 

sensitivity of the Bahamas’ many aquifers needs to be assessed more thoroughly. As water 

availability varies by island, the supply-demand balance is heavily influenced by population 

concentration. For example, New Providence, the largest population centre, has significantly 

fewer freshwater lenses than is required, necessitating heavy reliance on reverse osmosis plants 

and the importation of water from other islands. Because the Bahamas’ rainfall is highly variable 

every year, a volume assessment of precipitation may be insufficient unless climate change is 

considered in the context of time and space. 

Due to the limitations of this study, which only examined trends in hydroclimatic variables and 

the effects of climate change on rainfall and potable water, future studies should include 

modelling The Bahamas’ hydrology to incorporate as many factors as possible. Large-scale 

planning for adaptation strategies to climate change impacts is essential to avert catastrophic 

human despair. This study can assess the possible future change in the Bahamas hydroclimate. 

Still, the data from higher resolution climate models may be more beneficial for policymakers 

and stakeholders to analyze hydroclimate changes at a local scale. A viable alternative is to 

dynamically downscale regional climate models. Furthermore, the CMIP6 models fail to account 

for factors such as island size or local topography (Sobel, Burleyson and Yuter 2011). However, 

both factors have been demonstrated to affect hydroclimatic variability (Herrera and Ault 2017).  
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8 APPENDIX I - GLOSSARY 

Anthropocene  The Anthropocene is a hypothesised new geological epoch that would 

emerge from significant human-driven changes to the Earth System’s structure and functioning, 

particularly the climate system. Diverse fields and the general public have already used the 

notion to represent humanity’s significant impact on earth’s processes. 

Anthropocenic  Resulting from or produced by human activities. 

Anthropogenic emissions  Human-caused emissions of greenhouse gases (GHGs), precursors 

of GHGs, and aerosols. Fossil fuel combustion, deforestation, land use and land use changes 

(LULUC) and animal production, fertilisation, waste management, and industrial processes are 

all examples of these activities. 

Carbon dioxide (CO2)  CO2 is the most significant human greenhouse gas (GHG) 

influencing the earth’s radiative balance. It has a Global Warming Potential (GWP) of 1 because 

it is the standard against which other GHGs are assessed. Land use and land-use change are both 

terms that can be used interchangeably (LUC). 

Climate Change  Any change in climate over time, whether caused by natural variability or 

human activity, is referred to as climate change. 

Extreme event  Extreme weather events, such as a severe storm or a heatwave, are unusual 

meteorological circumstances for a specific location and/or period. An extraordinary average 

over time of a series of weather occurrences, such as significant rainfall across a season, is an 

extreme climate event. 

Resilience When faced with adversity, resilience is the ability to maintain one’s integrity. 

Sensitivity Is the degree to which climate-related stimuli affect a system, either negatively or 

positively. The effect might be direct (for example, a change in crop output in response to a 

change in temperature mean, range, or variability) or indirect (for example, damages caused by 

increased coastal flooding owing to sea-level rise). 

Vulnerability  It is the degree to which climate change can adversely affect a system, 

including factors such as climate variability and extreme conditions. A system’s vulnerability 

depends on its sensitivity, its rate of climate variation, and its ability to adapt. 

 

9 APPENDIX II – LOCATIONS OF INTERESTS 

Table 7-1: The names and points of interest in The Bahamas 

ICAO IATA WMO City Island/State Country Latitude Longitude 

MYGW WTD 78061 West End Grand Bahama Bahamas 26.6868 -78.9790 

MYGF FPO 78062 Freeport Grand Bahama Bahamas 26.5565 -78.6956 
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MYAM MHH 78066 Marsh Harbour Central Abaco Bahamas 26.5114 -77.0845 

MYAT TCB 78067 Treasure Cay Abaco Bahamas 26.7453 -77.3911 

MYBS BIM 78070 Alice Town South Bimini Bahamas 25.7333 -79.2652 

MYNN NAS 78073 Nassau New Providence Bahamas 25.0393 -77.4701 

MYEM GHB 78076 
Governor's 
Harbour 

Eleuthera Bahamas 25.2847 -76.3310 

MYEH ELH 78077 North Eleuthera Eleuthera Bahamas 25.4756 -76.6813 

MYER RSD 78080 Rock Sound Eleuthera Bahamas 24.8950 -76.1763 

MYAB  78083 Mangrove Cay Andros Bahamas 24.2877 -77.6844 

MYAF ASD 78086 Fresh Creek North Andros Bahamas 24.6984 -77.7925 

MYCB TBI 78087 New Bight Cat Island Bahamas 24.3148 -75.4576 

MYSM ZSA 78088 Cockburn Town San Salvador Bahamas 24.0641 -74.5311 

MYRP RCY 78089 Port Nelson Rum Cay Bahamas 23.6834 -74.8363 

MYEF GGT 78091 Moss Town Exuma Bahamas 23.5625 -75.8776 

MYEG  78092 George Town Exuma Bahamas 23.4666 -75.7817 

MYLD LGI 78094 Deadman's Cay Long Island Bahamas 23.1785 -75.0883 

MYRD DCT 78101 Duncan Town Ragged Island Bahamas 22.1819 -75.7293 

MYMM MYG 78109 Mayaguana Mayaguana Bahamas 22.3806 -73.0111 

MYCI CRI 78103 Colonel Hill Crooked Island Bahamas 22.7454 -74.1825 

MYAP AXP 78104 Spring Point Acklins Bahamas 22.4419 -73.9708 

MYIG IGA 78121 Matthew Town Inagua Bahamas 20.9745 -73.6610 

KEYW EYW 72201 Key West Florida United States 24.5537 81.7550 

KMIA MIA 72202 Miami Florida United States 25.7932 -80.2906 

KMLB MLB 72204  Florida United States 28.1013 80.6451 

KFLL FLL 72205 Fort Lauderdale Florida United States 26.0726 -80.1527 

MUVR VRA 78229 Varadero Matanzas Cuba 23.0344 -81.4353 

MUCM CMW 78255 Camagüey Cuba 21.4247 77.8452 

MUHA HAV 78224 Havana 
Ciudad de la 
Habana 

Cuba 22.9892 -82.4091 

MTPP PAP 78439 Port-au-Prince Haiti 18.5758 72.2959 

MDPP POP 78457 Puerto Plata 
Dominican 
Republic 

19.7552 70.5637 

TXKF BDA 78016 Hamilton  Bermuda 32.3634 64.7053 

MBGT  78118  Turks Island 
Turks and Caicos 
Islands 

21.4422 71.1460 

MBPV  78114 Providenciales 
Turks and Caicos 
Islands 

21.7763 72.2713 

 

 
#!/usr/bin/env python3 

# -*-coding:utf-8 -*- 
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# ----------------------------------------------------------- 

#############################################################################

########################################################## 

#############################################################################

########################################################## 

#############################################################################

########################################################## 

#================================================================ 

# HEADER 

#================================================================ 

# ----------------------------------------------------------- 

# title           :ncBase.py 

# author          :Orson M. Nixon 

# date            :2021/11/25 

# version         :0.1 

# usage           : 

# notes           :commands must be declared using the do_* method format to 

be accepted 

# 

# 

# Copyright (C) 2021 Orson M. Nixon (omnixon@gmail.com) and contributors 

# 

#================================================================ 

# END_OF_HEADER 

#================================================================ 

#############################################################################

##################### 

#############################################################################

##################### 

 

__author__ = 'Orson M. Nixon' 

__credits__ = ['Orson M. Nixon', ''] 

__license__ = 'GPL'  # GNU Public License 

__version__ = '1.0.1' 

__maintainer__ = 'Orson M. Nixon' 

__email__ = 'omnixon@gmail.com' 

__status__ = 'Prototype' 

__date__ = '2021/11/12' 

__username__ = 'omnixon' 

__description__ = 'CIMP6 Monthly Temperature and Precipitation Data 

Extraction.' 

#############################################################################

##################### 

#----------------------------------------------------------------------------

--------------------# 

import fnmatch 

import os, re, sys, platform, subprocess, time 

 

#############################################################################

########################################################## 

#############################################################################

########################################################## 

#############################################################################

########################################################## 

# 
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# Base Class 

# 

#############################################################################

########################################################## 

class Base(object): 

    debug = False 

    # file_report = "report.txt" 

    # report = os.path.join(os.path.curdir , file_report) 

    attributes = {}  # used in prepare() 

    listed_keys = ['debug', 'file_report', 'report', 'filename', 

                   'latitude', 'longitude', 'latlonlist', 'index', 

                   'dates', 'dataarray', 'df'] 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def __init__(self, *args, **settings): 

        ############## 

 

        _dict = {} 

        # Set default values for listed keys 

        for item in self.listed_keys: 

            _dict[item] = 'None' 

 

        # Update the dictionary with all settings 

        _dict.update(settings) 

 

        # Have the keys of settings as instance attributes 

        self.__dict__.update(_dict) 

 

        # If the kwargs contain the key 'debug', the following get method 

will 

        # return its value, or else it would remain whatever value was in 

        # self.debug's variable before 

        # self.debug = settings.get("debug",self.debug) 

 

        if self.debug: 

            print("From Base.__init__()") 

        ############## 

        self.attributes = settings.copy()  # Copy from class variable 

        # self.attributes.update(settings) # Apply 

 

        ######################################################## 

        for key, value in settings.items(): 
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            # print("{} is {}".format(key,value)) 

            self.attributes[key] = value 

            setattr(self, key, value) 

        ######################################################## 

        self.initialize(**settings) 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def initialize(self, **kwargs): 

        ############## 

        if self.debug: 

            print("From Base.initialize") 

        ############## 

 

        allowed_keys = list(self.__dict__.keys()) 

        self.__dict__.update((key, value) for key, value in kwargs.items() if 

key in allowed_keys) 

 

        for key, value in kwargs.items(): 

            self.attributes[key] = value 

            setattr(self, key, value) 

            if key in allowed_keys: 

                # print( '{0} = {1}'.format(key, value)) 

                setattr(self, key, value) 

 

        ######################################################## 

 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # This function will generate the file names in a directory 

    # tree by walking the tree either top-down or bottom-up. For each 

    # directory in the tree rooted at directory top (including top itself), 

    # it yields a 3-tuple (dirpath, dirnames, filenames). 

    # 

    # Parameters: 
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    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def getListOfFiles(self, directory, pattern="*.nc"): 

        ############## 

        if self.debug: 

            print("From Base.getListOfFiles") 

        ############## 

 

        allFiles = list() 

        files = list() 

        # List which will store all of the full filepaths. 

        filelist = [] 

        ########################################## 

 

        if os.path.exists(directory): 

            os.chdir(directory) 

            # create a list of file and sub directories names in the given 

directory 

            listOfFile = os.listdir(directory) 

            # Iterate over all the entries 

            for root, dirs, files in os.walk(directory): 

                for file in files: 

                    filename = os.path.join(root, file) 

                    if fnmatch.fnmatch(file, pattern): 

                        # append the file name to the list 

                        filelist.append(filename) 

            ############################################################# 

        ######################################################## 

        return filelist 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def __str__(self): 

        ############## 
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        if self.debug: 

            print("From Base.__str__") 

        ############## 

        printable_string = '\n{0!s:_^80}\n'.format('Base') 

 

        for k, v in self.__dict__.items(): 

            printable_string += '  {0!s:<29}{1!s:<50}\n'.format(k, v) 

 

        if self.attributes: 

            printable_string += '\n{0!s:40}\n'.format('Settings') 

            for k, v in self.attributes.items(): 

                printable_string += '  {0!s:<29}{1!s:<50}\n'.format(k, v) 

 

        ######################################################## 

        return printable_string 

        ######################################################## 

 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    

#############################################################################

############################### 

    # End of class 

    

#############################################################################

############################### 

    

#############################################################################

############################### 

#############################################################################

########################################################## 

#############################################################################

########################################################## 

#############################################################################

########################################################## 

# 

# NetCDF Converter Class 

# 

#############################################################################

########################################################## 

from ncLocation import Location 

 

 

class NetCDFConverter(Base): 

 

    

#############################################################################

############################### 

    # Initialize NetCDF Converter. 

    # 
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    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def __init__(self, file_name = "", *args, **settings): 

        ############## 

        ######################################################## 

        super(NetCDFConverter, self).__init__(*args, **settings) 

        ######################################################## 

        # if "debug" in settings: 

        #    self.debug = settings.get('debug', False) 

 

        if self.debug: 

            print("From NetCDFConverter.__init__()") 

        ############## 

        self.filename = file_name 

        self.latitude = [] 

        self.longitude = [] 

        self.latlonlist = [] 

        self.index = None 

        self.dates = None 

        self.data = None 

        self.dataarray = None 

        # self.initialize(**settings) 

        ######################################################## 

 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def findLatIndex(self, lat): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.findLatIndex") 

        ############## 

        sqDiff = (self.latitude - lat) ** 2 



 

92 

 

        minIndex = sqDiff.argmin() 

        # for latindex in range(len(self.latitude)): 

        #    if self.latitude[latindex] == lat: 

        #        return latindex 

        ############## 

        ######################################################## 

        return minIndex 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def findLonIndex(self, lon): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.findLonIndex") 

        ############## 

        # for lonindex in range(len(self.longitude)): 

        #    if self.longitude[lonindex] == lon: 

        #        return lonindex 

        sqDiff = (self.longitude - lon) ** 2 

        minIndex = sqDiff.argmin() 

        # 

        ######################################################## 

        return minIndex 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # Get nearest indices to (latitude, longitude). 

    # 

    # Parameters: 

    #       latitude : float 

    #           Latitude in degrees 

    #       longitude : float 

    #           Longitude in degrees 

    # 

    # Returns: 

    # 
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    # 

    # 

    # 

    

#############################################################################

############################### 

    def getNearestIndices(self, latitude, longitude): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.getNearestIndices") 

        ######################################################## 

        # index of nearest latitude 

        idx_lat = int(round((latitude - 90.0) / self.delta_lat)) 

        # avoid out of bounds latitudes 

        if idx_lat < 0: 

            idx_lat = 0  # if latitude == 90, north pole 

        elif idx_lat > self.lat_size: 

            idx_lat = self.lat_size  # if latitude == -90, south pole 

        # adjust longitude from -180/180 to 0/360 

        longitude = longitude % 360.0 

        # index of nearest longitude 

        idx_lon = int(round(longitude / self.delta_lon)) % self.lon_size 

        ######################################################## 

        # 

        ######################################################## 

        if self.debug: 

            print("From a methodTemplate") 

            print('Nearest latitude index is : {0}'.format(idx_lat)) 

            print('Nearest longitude index is : {0}'.format(idx_lon)) 

 

        ######################################################## 

        return idx_lat, idx_lon 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def openNetcdf(self, filename, mode='r'): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.openNetcdf") 

        ######################################################## 
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        from netCDF4 import Dataset 

        import os 

 

        # checking that the file exists 

        exists = os.path.exists(filename) 

        if exists: 

            data = netcdf.Dataset(filename, mode=mode) 

        ######################################################## 

        # data variables and dimensions 

        variables = set(data.variables.keys()) 

        dimensions = set(data.dimensions.keys()) 

        self.keys = tuple(variables - dimensions) 

        # size of lat/lon dimensions 

        self.lat_size = data.dimensions['lat'].size 

        self.lon_size = data.dimensions['lon'].size 

        # spatial resolution in degrees 

        self.delta_lat = -180.0 / (self.lat_size - 1)  # from north to south 

        self.delta_lon = 360.0 / self.lon_size  # from west to east 

        # time resolution in hours 

        self.time_size = data.dimensions['time'].size 

        self.start_time = data['time'][0] 

        self.stop_time = data['time'][-1] 

        self.time_range = self.stop_time - self.start_time 

        self.delta_time = self.time_range / (self.time_size - 1) 

        if self.debug: 

            print('Keys: {0}'.format(self.keys)) 

        #    print('Latitude size is : {0}, \nLongitude size is: 

{1}'.format(self.lat_size, self.lon_size)) 

        #    print('time_size is : {0}'.format(self.time_size)) 

        #    print('delta_time is : {0}'.format(self.delta_time)) 

        ######################################################## 

        return data 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # Sets the location for the query. 

    # 

    # Parameters: 

    #       time: datetime or DatetimeIndex 

    #           Time range of the query. 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def setLocation(self, time, latitude, longitude): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.setLocation") 
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        ############## 

 

        ######################################################## 

        if isinstance(time, datetime.datetime): 

            tzinfo = time.tzinfo 

        else: 

            tzinfo = time.tz 

 

        if tzinfo is None: 

            self.location = Location(latitude, longitude) 

        else: 

            self.location = Location(latitude, longitude, tz=tzinfo) 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # Submits a query to convert the netcdf data to a pandas DataFrame. 

    # 

    # Parameters: 

    #       latitude: float 

    #           The latitude value. 

    #       longitude: float 

    #           The longitude value. 

    #       start: datetime or timestamp 

    #           The start time. 

    #       end: datetime or timestamp 

    #           The end time. 

    #       vert_level: None, float or integer 

    #           Vertical altitude of interest. 

    #       variables: None or list 

    #           If None, uses self.variables. 

    #       close_netcdf_data: bool 

    #           Controls if the temporary netcdf data file should be closed. 

    #           Set to False to access the raw data. 

    # 

    # Returns: 

    #       data : DataFrame 

    #           column names are the weather model's variable names. 

    # 

    

#############################################################################

############################### 

    def getData(self, latitude, longitude, start, end, 

                 vert_level=None, query_variables=None, 

                 close_netcdf_data=True): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.getData") 

        ############## 

        self.data = None 

        ######################################################## 

        #if vert_level is not None: 
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        #    self.vert_level = vert_level 

 

        #if query_variables is None: 

        #    self.query_variables = list(self.variables.values()) 

        #else: 

        #    self.query_variables = query_variables 

 

        self.latitude = latitude 

        self.longitude = longitude 

        #self.set_query_latlon()  # modifies self.query 

        self.setLocation(start, latitude, longitude) 

 

        self.start = start 

        self.end = end 

        #self.query.time_range(self.start, self.end) 

 

        #self.netcdf_data =  self.openNetcdf() 

        # might be better to go to xarray here so that we can handle 

        # higher dimensional data for more advanced applications 

        #self.data = self._netcdf2pandas(self.netcdf_data, 

self.query_variables) 

 

        if close_netcdf_data: 

            print("closing netcdf file") 

            #self.netcdf_data.close() 

 

        return self.data 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # Converts time data into a pandas date object. 

    # 

    # Parameters: 

    #       time: netcdf 

    #           Contains time information. 

    # 

    # Returns: 

    #       pandas.DatetimeIndex 

    # 

    

#############################################################################

############################### 

    def setTime(self, variables, name='time', units=None, tzinfo=None, 

**kwargs): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.setTime") 

        ############## 

        timevar_units = 'days since 0001-01-01 00:00:00' 

        ######################################################## 

        times = variables[name] 



 

97 

 

        t_cal = variables[name].calendar 

        if variables[name].ndim > 1: 

            _str_data = variables[name][:, :] 

 

            if units == None: 

                units = timevar_units 

            times = [parse(_str_data[i, :].tostring()) for i in 

range(len(_str_data[:, 0]))] 

            data = netcdf.date2num(times, units) 

        else: 

            #data = variables[name][:] 

            data = netcdf.num2date(variables[name][:].squeeze(), units = 

variables[name].units, calendar = t_cal) 

 

 

        if units == None: 

            try: 

                self._units = variables[name].units 

            except: 

                self._units = units 

        else: 

            self._units = units 

 

        if tzinfo == None: 

            self._tzinfo = pytz.utc 

        else: 

            self._tzinfo = tzinfo 

 

        units_split = self._units.split(' ', 2) 

        assert len(units_split) == 3 and units_split[1] == 'since', \ 

            'units string improperly formatted\n' + self._units 

        self.origin = parse(units_split[2]) 

 

        self._units = units_split[0].lower() 

 

        # compatibility to CF convention v1.0/udunits names: 

        if self._units in ['second', 'sec', 'secs', 's']: 

            self._units = 'seconds' 

        if self._units in ['min', 'minute', 'mins']: 

            self._units = 'minutes' 

        if self._units in ['h', 'hs', 'hr', 'hrs', 'hour']: 

            self._units = 'hours' 

        if self._units in ['day', 'd', 'ds']: 

            self._units = 'days' 

 

        file_times = netcdf.num2date(variables[name][:].squeeze(), 

variables[name].units, 

                                     only_use_cftime_datetimes=False, 

only_use_python_datetimes=True) 

        #dtime = netcdf.num2date(times[:], times.units) 

        self.start_time = netcdf.num2date(times[0], units = times.units, 

calendar = t_cal) 

        self.end_time = netcdf.num2date(times[-1], units = times.units, 

calendar = t_cal) 

        self.time = pd.DatetimeIndex(pd.Series(file_times), 
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tz=self._tzinfo).strftime('%m/%Y') 

 

        # Now we convert dates to pandas format 

        #dates_pd = pd.to_datetime(data) 

        # Convert timestamps to periods, since we dealing with monthly values 

        #periods = dates_pd.to_period(freq='M') 

 

        if self.debug: 

            print("From NetCDFConverter.setTime") 

            #print("Time dimension: {0}".format(times)) 

            #print("Data: {0}".format(data)) 

            #print("Units: {0}".format(self._units)) 

            #print("Pandas format dates: {0}".format(dates_pd)) 

            #print("Periods: {0}".format(periods)) 

            #print("Dates: {0}".format(dates)) 

            #print("Units: {0}".format(self._units)) 

            #print("First: {0}".format(self.start_time.strftime('%Y-%b-%d 

%H:%M'))) 

            #print("Last: {0}".format(self.end_time.strftime('%Y-%b-%d 

%H:%M'))) 

            #print("Times: {0}".format(self.time)) 

 

        return self.time 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # Transforms data from netcdf to pandas DataFrame. 

    # 

    # Parameters: 

    #       data: netcdf 

    #           Data returned from query. 

    #       query_variables: list 

    #           The variables requested. 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def _netcdf2pandas(self, netcdf_data, query_variables): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter._netcdf2pandas") 

        ############## 

 

        ######################################################## 

        try: 

            time_var = 'time' 

            self.set_time(netcdf_data.variables[time_var]) 

        except KeyError: 
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            time_var = 'time1' 

            self.set_time(netcdf_data.variables[time_var]) 

 

        data_dict = {key: data[:].squeeze() for key, data in 

                     netcdf_data.variables.items() if key in query_variables} 

 

        return pd.DataFrame(data_dict, index=self.time) 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def processFile(self, file, model="MRI-ESM2-0 ", mode='r', lat = 25, lon 

= 77, *args, **kwargs): 

        plotlist = np.array([]) 

        df = None 

        # Reading in the netCDF4 file 

        self.data = self.openNetcdf(file, mode) 

 

        # Find the type of element 

        filename = file.split(os.sep)[-1] 

        ## 

        ######################################################## 

        # Accessing the data from the variables 

        time_range = self.setTime(self.data.variables) 

 

        # Storing the lat data into the variable 

        self.latitude = self.data.variables['lat'][:] 

        # Storing the lon data into the variable 

        self.longitude = self.data.variables['lon'][:] 

        #self.latlonlist = self.getLatLonList() 

 

        # Squared difference between the specified lat,lon and the lat,lon of 

the netCDF 

        sq_diff_lat = (self.latitude - kwargs['latitude']) ** 2 

        sq_diff_lon = (self.longitude - kwargs['longitude']) ** 2 

        # Find the nearest latitude and longitude for the station 

        lat_idx = np.abs(self.latitude - kwargs['latitude']).argmin() 

        lon_idx = np.abs(self.longitude - kwargs['longitude']).argmin() 

 

        # Identify the index of the min value for lat and lon 

        min_index_lat = lat_idx 
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        min_index_lon = lon_idx 

        #min_index_lat = sq_diff_lat.argmin() 

        #min_index_lon = sq_diff_lon.argmin() 

        #min_index_lat = self.findLatIndex(kwargs['latitude']) 

        #min_index_lon = self.findLonIndex(kwargs['longitude']) 

 

        # Accessing the data from the variables 

        var_data = 0.0 

        if 'tasmax' in self.keys: 

            #print("Element values: 

{0}".format(self.data.variables['tasmax'])) 

            var_data = self.data.variables['tasmax'] 

            element = 'tasmax' 

        elif 'tasmin' in self.keys: 

            var_data = self.data.variables['tasmin'] 

            element = 'tasmin' 

        elif 'pr' in self.keys: 

            var_data = self.data.variables['pr'] 

            element = 'pr' 

        #var_data = self.data.variables[element] 

        column_names = ["Latitude", "Longitude", "ICAO", "BlckNo", element] 

        df = pd.DataFrame(0.0, index=self.setTime(self.data.variables), 

columns=column_names) 

 

        for t_index in np.arange(0, len(time_range)): 

            df.loc[time_range[t_index]]['ICAO'] = kwargs['station'] 

            df.loc[time_range[t_index]]['Latitude'] = kwargs['latitude'] 

            df.loc[time_range[t_index]]['Longitude'] = kwargs['longitude'] 

            df.loc[time_range[t_index]]['BlckNo'] = int(kwargs['blckNo']) 

            if 'tas' in element: 

                df.loc[time_range[t_index]][element] = (var_data[t_index, 

min_index_lat, min_index_lon]) - 273.15 

            else: 

                df.loc[time_range[t_index]][element] = var_data[t_index, 

min_index_lat, min_index_lon] 

 

        ######################################################## 

        if self.debug: 

            print("From NetCDFConverter.processFile") 

            #print(filename) 

            #print("Variable Keys: \n{0}".format(self.data.variables.keys())) 

            print("df: {0}".format(df)) 

            print("Element and model: {0}".format(element, model)) 

            print("Latitude: {0} \nLongitude: {1}".format(min_index_lat, 

min_index_lon)) 

            print("Station: {0}".format(kwargs['station'])) 

            print("Element values: {0}".format(var_data)) 

            # print(data.variables['time'].size) 

        ######################################################## 

        self.data.close() 

        return df, column_names 

        

#############################################################################

##################### 
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#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def getLatLonList(self): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.getLatLonList") 

        ############## 

        list = [] 

        for i in range(len(self.latitude)): 

            for j in range(len(self.longitude)): 

                list.append((self.latitude[i], self.longitude[j])) 

 

        ######################################################## 

        return list 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def ncdump(self, nc_fid, verb=True): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.ncdump") 

        ############## 

        nc_attrs = None 

        nc_dims = None 

        nc_vars = None 

 

        def print_ncattr(key): 

            try: 
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                print("\t\ttype:", repr(nc_fid.variables[key].dtype)) 

                for ncattr in nc_fid.variables[key].ncattrs(): 

                    print('\t\t%s:' % ncattr, 

repr(nc_fid.variables[key].getncattr(ncattr))) 

            except KeyError: 

                print("\t\tWARNING: %s does not contain variable attributes" 

% key) 

 

        # NetCDF global attributes 

        nc_attrs = nc_fid.ncattrs() 

        if verb: 

            print("NetCDF Global Attributes:") 

            for nc_attr in nc_attrs: 

                print('\t%s:' % nc_attr, repr(nc_fid.getncattr(nc_attr))) 

 

        # Dimension shape information. 

        nc_dims = [dim for dim in nc_fid.dimensions]  # list of nc dimensions 

        if verb: 

            print("NetCDF dimension information:") 

            for dim in nc_dims: 

                print("\tName:", dim) 

                print("\t\tsize:", len(nc_fid.dimensions[dim])) 

                print_ncattr(dim) 

 

        # Variable information. 

        nc_vars = [var for var in nc_fid.variables]  # list of nc variables 

        if verb: 

            print("NetCDF variable information:") 

            for var in nc_vars: 

                if var not in nc_dims: 

                    print('\tName:', var) 

                    print("\t\tdimensions:", 

nc_fid.variables[var].dimensions) 

                    print("\t\tsize:", nc_fid.variables[var].size) 

                    print_ncattr(var) 

 

        ######################################################## 

        return nc_attrs, nc_dims, nc_vars 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################
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############################### 

    def processFiles(self, files, mode='r'): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.processFile") 

        ############## 

 

        ############## 

        for i in range(len(files)): 

            plotlist = np.array([]) 

            # Open netCDF4 file 

            file = netcdf.Dataset(files[i], mode) 

            # nc_attrs, nc_dims, nc_vars = self.ncdump(file) 

 

            # Find the type of element 

            filename = files[i].split(os.sep)[-1] 

            element = filename.partition('_') 

            value = None 

 

            # Extract variable 

            # vars = file.variables['element[0]'] 

 

            for j in range(len(self.latlonlist)): 

                if element[0] == 'pr': 

                    # print ('pr') 

                    value = file.variables['pr'][:, 

self.findLatIndex(self.latlonlist[j][0]), 

                            self.findLonIndex(self.latlonlist[j][1])] 

                elif element[0] == 'tasmax': 

                    # print ('tasmax') 

                    value = file.variables['tasmax'][:, 

self.findLatIndex(self.latlonlist[j][0]), 

                            self.findLonIndex(self.latlonlist[j][1])] 

                elif element[0] == 'tasmin': 

                    # print ('tasmin') 

                    value = file.variables['tasmin'][:, 

self.findLatIndex(self.latlonlist[j][0]), 

                            self.findLonIndex(self.latlonlist[j][1])] 

                ########################## 

                plotlist = np.append(plotlist, value) 

                # print("Plot list is {} and size {}".format(plotlist, 

len(plotlist))) 

            ########################## 

            ma.resize(plotlist, (len(files), 1)) 

            # dataarray[:, i] = plotlist 

            # np.append(self.dataarray, plotlist, axis = 0) 

            # self.dataarray = np.append(self.dataarray, plotlist, axis = 0) 

            # print("Data array is {}".format(self.dataarray)) 

            # print (vars.get_dims()) 

 

            ######################################################## 

            # Close NetCDF file. 

            file.close() 

        ######################################################## 

 



 

104 

 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def process(self, startDate='1/1/1971', endDate='12/31/2020', freq="M"): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.process") 

        ############## 

        files = self.getListOfFiles(self.netcdf_dir, self.nc_pattern) 

 

        file = netcdf.Dataset(files[0]) 

        self.latitude = file.variables['lat'][:] 

        self.longitude = file.variables['lon'][:] 

        self.latlonlist = self.getLatLonList() 

 

        self.index = pd.MultiIndex.from_tuples(self.latlonlist, names=['Lat', 

'Lon']) 

        self.dates = pd.date_range(start=startDate, end=endDate, freq="M") 

        self.dataarray = np.zeros((len(self.latlonlist), len(self.dates))) 

 

        nc_attrs, nc_dims, nc_vars = self.ncdump(file) 

 

        precip = file.variables['prec']  # precipitation variable 

        # precip = file.variables['prec'][:] 

        time_var = file.variables['time'] 

 

        dtime = netcdf.num2date(time_var[:], time_var.units) 

 

        ######################################################## 

        # Close original NetCDF file. 

        file.close() 

 

        # self.processFiles(files) 

        ############## 

        # df = pd.DataFrame(data = self.dataarray, index = self.index, 

columns = self.dates) 

 

        # df.replace(-9999, np.nan, inplace = True) 

        # df.to_csv('master_dataset.csv', encoding='utf-8') 

        ############## 
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        if self.debug: 

            # print (self.latlonlist) 

            # print (self.index) 

            # print (self.dates) 

            # print (self.dataarray) 

            # print (precip ) 

            print("The variable is {}".format(precip)) 

            print(dtime) 

            # print (df) 

        ############## 

        ######################################################## 

 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def getLocationLatLong(self, location="Nassau"): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.getLocationLatLong") 

        ######################################################## 

        geolocator = Nominatim(user_agent='netCDF_Extraction') 

        # loc = geolocator.geocode(location + ',' + country) 

        try: 

            loc = geolocator.geocode(location) 

            if loc: 

                lat = loc.latitude 

                lon = loc.longitude 

                loc = geolocator.reverse(str(lat) + ',' + str(lon), 

language='en') 

                city = loc.raw["address"].get("city") 

                country = loc.raw["address"].get("country") 

                return (city, country, lat, lon) 

            else: 

                return None 

        except: 

            raise Exception("There was a problem with the geolocator 

function") 

        # print("latitude is :", lat, "\nlongtitude is:", lon) 

        ######################################################## 

        return None 



 

106 

 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def getLocations(self, locations): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.getLocations") 

        ######################################################## 

        geolocator = Nominatim(user_agent='ncExtraction') 

        df = None 

        # loc = geolocator.geocode(location + ',' + country) 

        cities = [] 

        countries = [] 

        latitudes = [] 

        longitudes = [] 

        try: 

            for location in locations: 

                print(location) 

                city, country, lat, lon = self.getLocationLatLong(location) 

                cities.append(city) 

                countries.append(country) 

                latitudes.append(lat) 

                longitudes.append(lon) 

        except: 

            raise Exception("There was a problem with the geolocator 

function") 

 

        print(cities) 

        print(countries) 

        print(latitudes) 

        data = { 

            'City':cities, 

            'Country':countries, 

            'Latitude':latitudes, 

            'Longitude': longitudes} 

        df = pd.DataFrame(data, columns = ['City', 'Country', 'Latitude', 

'Longitude']) 

        ######################################################## 

        return df 
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#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def readNetcdfs(self, files, dim="time"): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.readNetcdfs") 

        ######################################################## 

        combined = None 

        ######################################################## 

        paths = sorted(self.getListOfFiles(files)) 

        datasets = [xr.open_dataset(p) for p in paths] 

        print(datasets) 

        #combined = xr.concat(datasets, dim) 

        return combined 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def convertGeoTIFFtoNetCDF(self, file): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.convertGeoTIFFtoNetCDF") 

        ############## 

 

        ######################################################## 

        geotiff_da = xr.open_rasterio(file) 
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#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def dfToCSV(self, df, csvFilePath, sep=",", columns=None): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.dfToCSV") 

        ############## 

        mode = 'a' if os.path.exists(csvFilePath) else 'w' 

        print("Mode: {0}".format(mode)) 

        ######################################################## 

        if not os.path.isfile(csvFilePath): 

            #filename = Path(csvFilePath) 

            #filename.touch(exist_ok=True) 

            open(csvFilePath, mode='w').close() 

            if columns is not None: 

                df.to_csv(csvFilePath, mode=mode, index=True, sep=sep, 

columns=columns) 

            else: 

                df.to_csv(csvFilePath, mode=mode, index=True, sep=sep) 

        elif len(df.columns) != len(pd.read_csv(csvFilePath, nrows=1, 

sep=sep).columns): 

            raise Exception( 

                "Columns do not match!! Dataframe has " + 

str(len(df.columns)) + " columns. CSV file has " + str( 

                    len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns)) 

+ " columns.") 

        elif not (df.columns == pd.read_csv(csvFilePath, nrows=1, 

sep=sep).columns).all(): 

            raise Exception("Columns and column order of dataframe and csv 

file do not match!!") 

        else: 

            if columns is not None: 

                df.to_csv(csvFilePath, mode=mode, index=True, sep=sep, 

header=False, columns=columns) 

            else: 

                df.to_csv(csvFilePath, mode=mode, index=True, sep=sep, 

header=False) 
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#############################################################################

##################### 

 

    

#############################################################################

############################### 

    # 

    # 

    # Parameters: 

    # 

    # 

    # Returns: 

    # 

    # 

    

#############################################################################

############################### 

    def __str__(self): 

        ############## 

        if self.debug: 

            print("From NetCDFConverter.__str__") 

        ############## 

        printable_string = '\n{0!s:_^80}\n'.format('NetCDFConverter') 

 

        for k, v in self.__dict__.items(): 

            printable_string += '  {0!s:<29}{1!s:<50}\n'.format(k, v) 

 

        if self.attributes: 

            printable_string += '\n{0!s:40}\n'.format('Settings') 

            for k, v in self.attributes.items(): 

                printable_string += '  {0!s:<29}{1!s:<50}\n'.format(k, v) 

 

        ######################################################## 

        return printable_string 

        

#############################################################################

##################### 

 

    

#############################################################################

############################### 

    

#############################################################################

############################### 

    # End of class 

    

#############################################################################

############################### 

    

#############################################################################

############################### 

#############################################################################

##################### 

#----------------------------------------------------------------------------

--------------------# 
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import os 

import shutil 

 

import sys 

import zipfile 

from pathlib import Path 

import pandas as pd 

 

from ncXarray import Reader 

import netCDF4 as netcdf 

 

from ncBase import Base 

from ncConverter import NetCDFConverter 

 

config = {} 

 

def unzipModelData(pattern = "*.zip", **config): 

    base = Base(**config) 

    files = base.getListOfFiles(config['zip_dir'], pattern) 

    print(f'Hi, {len(files)}') 

    count = 0 

    if files: 

        for file in files: 

            print('Zipped file {0}:'.format(file)) 

            count = count + 1 

            if zipfile.is_zipfile(file):  # if it is a zipfile, extract file 

                with zipfile.ZipFile(file) as zipObject: # treat the file as 

a zip 

                    listOfFileNames = zipObject.namelist() 

                    for fileName in listOfFileNames: 

                        if fileName.endswith('.nc'): 

                            zipObject.extract(fileName, 

config['unzipped_dir']) 

                            print('NetCDF file: {0}'.format(file)) 

                            print('File count: {0}'.format(count)) 

                            print('All the netcdf files are extracted') 

                    zipObject.close() 

 

def moveModelData(pattern = "*.nc", **config): 

    base = Base(**config) 

    files = base.getListOfFiles(config['unzipped_dir'], pattern) 

    for file in files: 

        print('Moving file: {0}'.format(file)) 

        shutil.move(file, config['netcdf_dir']) 

 

######################################################################### 

def extractNetCDF_Data(element, pattern = "*.nc", **config): 

    # Use a breakpoint in the code line below to debug your script. 

    base = Base(**config) 

    files = base.getListOfFiles(config['netcdf_dir'], pattern) 

    sorted(files) 

    count = 0 

     

    for file in files: 

        head, tail = os.path.split(file) 
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        data = netcdf.Dataset(file, 'r') 

        times = data.variables['time'] 

        year = times.units[11:15] 

         

 

    cities = pd.read_csv(config['city_csv']) 

    for index, row in cities.iterrows(): 

        location = (row["City"]) 

        location_latitude = (row["Latitude"]) 

        location_longitude = (row["Longitude"]) 

        for file in files: 

            # Reading-in the data 

            data = netcdf.Dataset(file, 'r') 

            time = data.variables['time'] 

            # Storing the lat and lon data of the netCDF file into variables 

            lat = data.variables['lat'][:] 

            lon = data.variables['lon'][:] 

 

            # Squared difference between the specified lat,lon and the 

lat,lon of the netCDF 

            sq_diff_lat = (lat - location_latitude) ** 2 

            sq_diff_lon = (lon - location_longitude) ** 2 

 

            # Identify the index of the min value for lat and lon 

            min_index_lat = sq_diff_lat.argmin() 

            min_index_lon = sq_diff_lon.argmin() 

            # Accessing the average temparature data 

            times = data.variables['time'] 

            head, tail = os.path.split(file) 

            exists = os.path.exists(file) 

 

            # Creating the date range for each year during each iteration 

            jd = netcdf.num2date(times[:], times.units) 

            if exists and "historical" in file: 

                dates = pd.date_range(start=config['startDate'], 

end=config['endDate'], freq="D") 

                count = count + 1 

            else: 

                dates = pd.date_range(start=config['startDate'], 

end=config['endDate'], freq="D") 

                variables = set(data.variables.keys()) 

                dimensions = set(data.dimensions.keys()) 

                keys = tuple(variables - dimensions) 

                 

                time_size = data.dimensions['time'].size 

                start_time = data['time'][0] 

                stop_time = data['time'][-1] 

                time_range = stop_time - start_time 

                delta_time = time_range / (time_size - 1) 

                 

 

######################################################################### 

def dfToExcel(df, filepath, sep=","): 

    if not os.path.isfile(filepath): 

        # Create a Pandas Excel writer using XlsxWriter as the engine. 
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        writer = pd.ExcelWriter(filepath, engine='xlsxwriter') 

        # Convert the dataframe to an XlsxWriter Excel object. 

        df.to_excel(writer, sheet_name='Sheet1') 

    elif len(df.columns) != len(pd.read_excel(filepath, nrows=1, 

sep=sep).columns): 

        raise Exception( 

            "Columns do not match!! Dataframe has " + str(len(df.columns)) + 

" columns. Excel file has " + str( 

                len(pd.read_excel(filepath, nrows=1, sep=sep).columns)) + " 

columns.") 

    elif not (df.columns == pd.read_excel(filepath, nrows=1, 

sep=sep).columns).all(): 

        raise Exception("Columns and column order of dataframe and csv file 

do not match!!") 

    else: 

        df.to_excel(filepath, mode='a', index=False, sep=sep, header=False) 

    ### 

 

######################################################################### 

def dfToCSV(df, csvFilePath, sep=",", columns=None): 

    if not os.path.isfile(csvFilePath): 

        df.to_csv(csvFilePath, mode='w', index=False, sep=sep) 

    elif len(df.columns) != len(pd.read_csv(csvFilePath, nrows=1, 

sep=sep).columns): 

        raise Exception( 

            "Columns do not match!! Dataframe has " + str(len(df.columns)) + 

" columns. CSV file has " + str( 

                len(pd.read_csv(csvFilePath, nrows=1, sep=sep).columns)) + " 

columns.") 

    elif not (df.columns == pd.read_csv(csvFilePath, nrows=1, 

sep=sep).columns).all(): 

        raise Exception("Columns and column order of dataframe and csv file 

do not match!!") 

    else: 

        df.to_csv(csvFilePath, mode='a', index=False, sep=sep, header=False) 

 

######################################################################### 

def extractNetCDF_XR(element, model, pattern = "*.nc", **config): 

    # Defining the names, lat, lon for the locations of your interest into a 

csv file 

    # this will read the file locations 

    locations = pd.read_csv(config['city_csv']) 

    print(locations) 

    # Loop through locations acquiring all the information one by one from 

the rows 

    for index, row in locations.iterrows(): 

        # one by one we will extract the information from the csv and put it 

into temp. variables 

        station = (row["ICAO"]) 

        block = (row["WMO"]) 

        location = (row["City"]) 

        location_latitude = (row["Latitude"]) 

        location_longitude = (row["Longitude"]) 

        city ={ 

            'station': station, 
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            'blckNo': block, 

            'location': location, 

            'latitude': location_latitude, 

            'longitude': location_longitude 

        } 

 

        nc = NetCDFConverter(**config) 

        files = nc.getListOfFiles(config['netcdf_dir'], pattern) 

        sorted(files) 

 

        if files: 

            for file in files: 

                df = None 

                column_names = None 

                mode = 'r' 

                filename = Path(file) 

                csv_file = filename.with_suffix('.csv') 

                head, tail = os.path.split(csv_file) 

                sep = ',' 

 

                ############################### 

                csv_file = os.path.join(config['csv_dir'], station + '_' + 

tail) 

                df, column_names = nc.processFile(file, model, mode, **city) 

                if config['debug']: 

                    print('--------------------------------------------------

----') 

                    print('CSV tail: {0}'.format(tail)) 

                    print('CSV file: {0}'.format(csv_file)) 

                    print() 

                ############################### 

                nc.dfToCSV(df, csv_file, sep, column_names) 

    ################################################### 

 

def netcdfReader_XR(element, model, pattern = "*.nc", **config): 

    ######################################## 

    base = Base(**config) 

    pattern = "tasmax*historical*.nc" 

    files = base.getListOfFiles(config['netcdf_dir'], pattern) 

    sorted(files) 

    ######################################## 

    # Defining the names, lat, lon for the locations of your interest into a 

csv file 

    # this will read the file locations 

    locations = pd.read_csv(config['city_csv']) 

    ######################################## 

    # Loop through locations acquiring all the information one by one from 

the rows 

    for index, row in locations.iterrows(): 

        location = (row["City"]) 

        location_latitude = (row["Latitude"]) 

        location_longitude = (row["Longitude"]) 

        date = "01/01/1970" 

        for file in files: 

            reader = Reader(file, **config) 
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            reader.selectLocation(location_latitude, location_longitude) 

            reader.selectTime(date) 

            reader.test() 

 

    ######################################## 

    if config['debug']: 

        #print(time) 

        print("Files: {0}".format(len(files))) 

        print("Config: {0}".format(reader)) 

 

######################################################################### 

def writeToExcelByPandas(excel_file_path, data_frame, index=False, 

sheet_name='Sheet 1'): 

    excel_writer = pd.ExcelWriter(excel_file_path, engine='xlsxwriter') 

    data_frame.to_excel(excel_writer, index=index, sheet_name=sheet_name) 

    excel_writer.save() 

    print(excel_file_path + ' has been created.') 

 

######################################################################### 

def readCsvByPandas(csv_file, sep=','): 

    data_frame = None 

    if (os.path.exists(csv_file)): 

        data_frame = pd.read_csv(csv_file, sep=',') 

        print("------------------data frame all----------------------") 

        print(data_frame) 

    else: 

        print(csv_file + " do not exist.") 

 

    return data_frame 

 

######################################################################### 

def readExcelByPandas(file, sheet=None, startrow=0 , startcol=0): 

    df = pd.DataFrame() 

    if (os.path.exists(file)): 

        if file.endswith('.xlsx'): 

            #df.append(pd.read_excel(file), sheet_name=sheet, 

startrow=startrow , startcol=startcol, ignore_index=True) 

            all_dfs = pd.read_excel(file, sheet_name = sheet) 

            print("------------------data frame all----------------------") 

            print(all_dfs) 

 

    else: 

        print(file + " do not exist.") 

 

    return df 

 

######################################################################### 

def mergeCSV(**config ): 

 

    locations = pd.read_csv(config['city_csv']) 

 

    for element in config['elements']: 

        print('Element: {0}'.format(element)) 

        merge_csv_file = None 

        for model in config['models']: 
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            print('Model: {0}'.format(model)) 

            for experiment in config['experiments']: 

                all_df = [] 

                print('Experiment: {0}'.format(experiment)) 

                merged_df = None 

                merge_csv_file = None 

                csv_pat = "*{0}*{1}*{2}*.csv".format(element, model, 

experiment) 

 

                base = Base(**config) 

                files = base.getListOfFiles(config['csv_dir'], csv_pat) 

                if files: 

                    for file in files: 

                        df = pd.read_csv(file, sep=',') 

                        head, tail = os.path.split(file) 

                        # df['file'] = file.split('/')[-1] 

                        df['ICAO'] = tail.split('_')[0] 

                        df['Model'] = model 

                        df['Experiment'] = experiment 

                        # df['File'] = tail 

                        all_df.append(df) 

 

                    filename = element + '_' + model + '_' + experiment + '_' 

+ "merged.csv" 

                    merge_csv_file = os.path.join(config['csv_dir'], 

'merged', filename) 

                    merged_df = pd.concat(all_df, ignore_index=True, 

sort=True) 

                    merged_df.to_csv(merge_csv_file) 

 

                    if config['debug']: 

                        print('----------------------------------------------

--------') 

                        print('Merged csv filename: 

{0}'.format(merge_csv_file)) 

                        print('Merged df: {0}'.format(merged_df)) 

                all_df = [] 

                merge_csv_file = None 

                merged_df = None 

 

    ############### 

 

######################################################################### 

def mergeCsvToExcel(**config ): 

 

    locations = pd.read_csv(config['city_csv']) 

 

    for element in config['elements']: 

        print('Element: {0}'.format(element)) 

        merge_excel_file = None 

        for model in config['models']: 

            print('Model: {0}'.format(model)) 

            for experiment in config['experiments']: 

                all_df = [] 

                print('Experiment: {0}'.format(experiment)) 
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                merged_df = None 

                merge_excel_file = None 

                csv_pat = "*{0}*{1}*{2}*.csv".format(element, model, 

experiment) 

 

                base = Base(**config) 

                files = base.getListOfFiles(config['csv_dir'], csv_pat) 

                if files: 

                    for file in files: 

                        df = readCsvByPandas(file, sep=',') 

                        head, tail = os.path.split(file) 

                        # df['file'] = file.split('/')[-1] 

                        df['ICAO'] = tail.split('_')[0] 

                        df['Model'] = model 

                        df['Experiment'] = experiment 

                        #df['File'] = tail 

                        all_df.append(df) 

                    filename = "element + '_' + model + '_' + experiment + 

'_' + merged.xlsx".format(element, model, experiment, config['xls_pattern']) 

                    filename = "{0}_{1}_{2}_merged{3}".format(element, model, 

experiment, config['xls_pattern']) 

                    merge_excel_file = os.path.join(config['excel_dir'], 

'merged', filename) 

                    merged_df = pd.concat(all_df, ignore_index=True, 

sort=True) 

                    writeToExcelByPandas(merge_excel_file, merged_df) 

 

                if config['debug']: 

                    print('--------------------------------------------------

----') 

                    print('Merged csv filename: 

{0}'.format(merge_excel_file)) 

                    print('Merged df: {0}'.format(merged_df)) 

                all_df = [] 

                merge_excel_file = None 

                merged_df = None 

 

    ############### 

 

def mergeExcelCombine(**config): 

    for element in config['elements']: 

        print('Element: {0}'.format(element)) 

        merge_excel_file = None 

        for model in config['models']: 

            print('Model: {0}'.format(model)) 

            for experiment in config['experiments']: 

                dflist = [] 

                sheets = [] 

                xls_pat = "*{0}*{1}*merged{2}".format(model, experiment, 

config['xls_pattern']) # 

                filename = "{0}_{1}{2}".format(model, experiment, 

config['xls_pattern']) 

                excel_file = os.path.join(config['excel_dir'], 'combine', 

filename) 

                writer = pd.ExcelWriter(excel_file, engine='xlsxwriter') 
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                base = Base(**config) 

                files = base.getListOfFiles(config['excel_dir'], xls_pat) 

                all_df = pd.DataFrame() 

                if files: 

                    for file in files: 

                        head, tail = os.path.split(file) 

                        sheet = (tail.split('_')[0]) 

                         

                        df = pd.read_excel(file, 'Sheet 1') 

                        df.to_excel(writer, sheet_name=sheet, startrow=0 , 

startcol=0) 

 

                    ##### 

                    writer.save() 

                print('DF List: {0}'.format(dflist)) 

                dflist = [] 

                sheets = [] 

 

 

    #writer.save() 

 

######################################################################### 

def process(**config ): 

    print('processing') 

    for element in config['elements']: 

        for model in config['models']: 

            zip_pat = "*{0}*{1}*.zip".format(element,model) 

            zip_pat = "*.zip".format(element,model) 

            unzipModelData(zip_pat, **config) 

            nc_pat = "*.nc".format(element, model) 

            moveModelData(nc_pat, **config) 

             

            nc_pat = "*{0}*{1}*.nc".format(element, model) 

            extractNetCDF_XR(element, model, nc_pat, **config) 

 

    mergeCSV(**config) 

    mergeCsvToExcel(**config) 

    mergeExcelCombine(**config) 

 

######################################################################### 

def main(): 

    import platform 

    if platform.system() == "Windows": 

        root = "C:\\" 

    elif platform.system() == "Linux": 

        root = os.path.expanduser("~") 

    else: 

        root = "" 

        print("Sorry, we don't currently have support for the " + 

sys.platform + "OS") 

    print("Main") 

 

    bhs_location = ["MYGF", "MYNN", "MYAM", "MYAF", "MYLD", "MYRD", "MYEG", 

"MYIG", "MYSM", "MYCB"] 

    elements = ["tasmax", "tasmin", "pr"] 
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    models = ["BCC-CSM2-MR", "CNRM-CM6-1", "CNRM-ESM2-1", "CanESM5", "GFDL-

ESM4", "IPSL-CM6A-LR", 

              "MIROC-ES2L", "MIROC6", "MRI-ESM2-0"] 

    experiments = ['historical', 'ssp126', 'SSP2-4.5', 'SSP3-7.0', 'SSP5-

8.5'] 

    config = { 

        'report': os.path.join(os.path.curdir, "report.txt"), 

        'folderclimatedata': os.path.join(root, "ClimatData"), 

        'netcdf_dir': os.path.join(root, "ClimatData", "Future", "netcdf"), 

        'tiff_dir': os.path.join(root, "ClimatData", "Future", "GeoTiff"), 

        'excel_dir': os.path.join(root, "ClimatData", "Future", "excel"), 

        'csv_dir': os.path.join(root, "ClimatData", "Future", "csv"), 

        'city_csv': os.path.join(root, "ClimatData", "Future", "csv", 

"cities.csv"), 

        'zip_dir': os.path.join(root, "ClimatData", "Future", "zipped"), 

        'unzip_dir': os.path.join(root, "ClimatData", "Future", "unzipped"), 

        'temp_dir': os.path.join(root, "ClimatData", "Future", "temp"), 

        'test_csv_file': os.path.join(root, "ClimatData", "Future", "csv", 

                                      "tasmax_Amon_GISS-E2-1-

G_ssp460_r1i1p1f2_gn_20150116-21001216_v20200115.csv"), 

        'test_nc_file': os.path.join(root, "ClimatData", "Future", "netcdf", 

                                     "tasmax_Amon_GISS-E2-1-

G_ssp460_r1i1p1f2_gn_20150116-21001216_v20200115.nc"), 

        'xls_pattern': ".xlsx", 

        'nc_pattern': "tasmax*.nc*", 

        'file_report': "report.txt", 

        'startDate': "1/1/1971", 

        'endDate': "12/31/2020", 

        'freq': "M", 

        'location': bhs_location, 

        'elements': elements, 

        'models': models, 

        'experiments': experiments, 

        'debug': True 

    } 

    process(**config) 

 

 

    if config['debug']: 

        print(config) 

         

    ############################################################## 

######################################################################### 

 

######################################################################### 

# Press the green button in the gutter to run the script. 

if __name__ == '__main__': 

    #print_hi('PyCharm') 

 

    try: 

        print("Processsing main") 

        main() 

    except Exception: 

        print(" ") 

    finally: 
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        print('\nPress any key to exit') 

 

######################################################################### 

 

10 APPENDIX III – NEAR AND LONG-TERM SEASONS. 

 

Figure 7-1: BCC SSP1-2.6 Near Term Winter 

Rainfall (38.31 – 337.81mm) 

 

Figure 7-2: BCC SSP2-4.5 Near Term Winter 

Rainfall (26.15 – 138.29mm) 

 

Figure 7-3: BCC SSP3-7.0 Near Term Winter 

Rainfall (15.39 – 128.81mm) 

 

Figure 7-4: BCC SSP5-8.5 Near Term Winter 

Rainfall (23.78 – 147.14mm) 
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Figure 7-5: BCC SSP1-2.6 Near Term Spring 

Rainfall (5.15 – 214.08mm) 

 

Figure 7-6: BCC SSP2-4.5 Near Term Spring 

Rainfall (26.16 – 138.29mm) 

 

Figure 7-7: BCC SSP3-7.0 Near Term Spring 

Rainfall (12.82 – 51.11mm) 

 

Figure 7-8: BCC SSP5-8.5 Near Term Spring 

Rainfall (5.11 – 72.61mm) 
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Figure 7-9: BCC SSP1-2.6 Near Term 

Summer Rainfall (34.04 – 204.30mm) 

 

Figure 7-10: BCC SSP2-4.5 Near Term 

Summer Rainfall (13.26 – 103.24mm) 

 

Figure 7-11: BCC SSP3-7.0 Near Term 

Summer Rainfall (33.61 – 72.51mm) 

 

Figure 7-12: BCC SSP5-8.5 Near Term 

Summer Rainfall (17.30 – 87.18mm) 
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Figure 7-13: BCC SSP1-2.6 Near Term 

Autumn Rainfall (38.31 – 337.81mm) 

 

Figure 7-14: BCC SSP2-4.5 Near Term 

Autumn Rainfall (63.85 – 228.71mm) 

 

Figure 7-15: BCC SSP3-7.0 Near Term 

Autumn Rainfall (50.05 – 135.79mm) 

 

Figure 7-16: BCC SSP5-8.5 Near Term 

Autumn Rainfall (51.65 – 286.63mm) 
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Figure 7-17: BCC SSP1-2.6 Long Term Winter 

Rainfall (16.15 – 93.97mm) 

 

Figure 7-18: BCC SSP2-4.5 Long Term Winter 

Rainfall (14.37 – 116.72mm) 

 

Figure 7-19: BCC SSP3-7.0 Long Term Winter 

Rainfall (3.21 – 162.74mm) 

 

Figure 7-20: BCC SSP5-8.5 Long Term Winter 

Rainfall (10.27 – 231.24mm) 
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Figure 7-21: BCC SSP1-2.6 Long Term Spring 

Rainfall (12.89 – 94.31mm) 

 

Figure 7-22: BCC SSP2-4.5 Long Term Spring 

Rainfall (9.63 – 55.45mm) 

 

Figure 7-23: BCC SSP3-7.0 Long Term Spring 

Rainfall (34.11 – 67.30mm) 

 

Figure 7-24: BCC SSP5-8.5 Long Term Spring 

Rainfall (14.40 – 82.71mm) 
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Figure 7-25: BCC SSP1-2.6 Long Term 

Summer Rainfall (54.27 – 62.73mm) 

 

Figure 7-26: BCC SSP2-4.5 Long Term 

Summer Rainfall (16.60 – 74.61mm) 

 

Figure 7-27: BCC SSP3-7.0 Long Term 

Summer Rainfall (20.48 – 78.50mm) 

 

Figure 7-28: BCC SSP5-8.5 Long Term 

Summer Rainfall (21.81 – 103.50mm) 
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Figure 7-29: BCC SSP1-2.6 Long Term Autumn 

Rainfall (87.96 – 90.86mm) 

 

Figure 7-30: BCC SSP2-4.5 Long Term Autumn 

Rainfall (50.87 – 347.68mm) 

 

Figure 7-31: BCC SSP3-7.0 Long Term Autumn 

Rainfall (28.89 – 91.76mm) 

 

Figure 7-32: BCC SSP5-8.5 Long Term Autumn 

Rainfall (29.62 – 74.79mm) 

 

 

  

  

 

 

 

 

 

 


